Nuclear Physics and Radioactivity

1.	The number of electrons in an atom of atomic number Z and mass number A is
-	1) A 2) Z 3) A+Z 4) A-Z
2	The repulsive force between the positively charged protons does not throw
	them apart, because
	1) Nuclear force is stronger 2) neutrons exist between protons
	3) coulombian force does not act at small distances
	4) Due to other reasons other than mentioned above
2)	Which of the following is not conserved in nuclear reactions?
<i>2)</i>	1) Momentum 2) charge 3) mass 4) Nucleons
1	In the nucleus, the forces between nucleons are
→.	1) Gravitational 2) Nuclear 3) both (1) & (2)
	4) Some other forces
5	
٥.	The B.E. per nucleon (S.B.E.) is almost constant for many nuclei. To what
	characteristic of the nuclear forces does it point? 1) Attractive nature 2) Evelonge force 3) Saturative nature 4) short range.
6	1) Attractive nature 2) Exchange force 3) Saturative nature 4) short range
O.	The mean density of the nuclei is proportional to
	1) mass number 2) atomic number 3) mass of nucleon
7	4) none of the above The approximate action of model and 11^{238} :
/.	The approximate ratio of nuclear densities of $_{26}\text{Fe}^{56}$ and $_{92}\text{U}^{238}$ is
	1) 0 2) ∞ 3) 1 4) none of these
8.	. The stability of a nucleus is determined by it's
	1) B.E. per nucleon 2) neutron to proton ratio
	3) by the consideration whether it contains an even or odd number of protons
	& neutrons 4) all these
9.	The packing fraction for ${}_{7}N^{14}$ isotope whose mass is 14,003 a.m.u. is
	1) 2.1×10^{-4} 2) 3×10^{-3} 3) 1.0002 4) 0.9
1	0.In each fission of 92U ²³⁵ releases 200 Mev of energy. How many fissions must
	occur per second to produce a power of 1 KW?
	1) 1.25×10^{18} 2) 1.25×10^{13} 3) 3.125×10^{13} 4) 3.2×10^{8}

11.In nuclear fission, 0.1% of mass is converted into energy. The energy released
by the fission of 1kg mass will be J
1) $9x10^{19}$ 2) $9x10^{17}$ 3) $9x10^{16}$ 4) $9x10^{13}$
12. The nuclei ${}_{6}C^{13}$ and ${}_{7}N^{14}$ can be described as
1) Isotopes 2) Isobars 3) Isotones 4) none of these
13. What is the approximate energy equivalent to rest mass of proton?
1) zero 2) 9x10 ¹⁶ J 3) 931 eV 4) 931 Mev
14. The total binding energies of ${}_{1}\text{H}^{2}$, ${}_{2}\text{He}^{4}$, ${}_{26}\text{Fe}^{56}$ and ${}_{92}\text{U}^{235}$ are 2.22, 28.3,
492 and 786 Mev respectively. Which of the following nucleus is most
stable? 1) $_{2}\text{He}^{4}$ 2) $_{1}\text{H}^{2}$ 3) $_{92}\text{U}^{235}$ 4) $_{28}\text{Fe}^{56}$
15. When the number of nucleons in a nucleus increase, the B.E. per nucleon
1) remains the same
2) decreases continuously with increase in mass number.
3)increases continuously with increase in mass number.
4) Initially increases and then decreases with increase in mass number.
16. Which of the following isotopes is normally fissionable?
1) $_{92}U^{235}$ 2) $_{92}U^{238}$ 3) $_{2}He^{4}$ 4) $_{93}NP^{239}$
17. Energy generation in stars is mainly due to
1) Chemical reactions 2) Fission of heavy nuclei
3) Fusion of heavy nuclei 4) Fusion of light nuclei.
18.In nuclear reactions, we have the conservation of
1) mass only 2) energy only 3) momentum only
4) mass, energy and momentum
19.Thermal neutrons are those which
1) are at very high temperature
2) move with high velocities
3) have kinetic energies similar to those of surrounding molecules
4) are at rest
20. A chain reaction is continues due to
1) Large mass defect 2) Large energy
3) Production of more neutrons in fission 4) None of these

21. The	volume of atom in comparison to the volume of the nucleus is of the
orde	volume of atom in comparison to the volume of the nucleus is of the r of $\begin{bmatrix} R_A \\ R_N \end{bmatrix}^3 = \begin{bmatrix} 0^{-10} \\ 0^{-15} \end{bmatrix}^3 = \begin{bmatrix} 0^5 \\ 0^{-15} \end{bmatrix}^3 = 10^{15}$
1) 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	nuclear holocaust ?
1) F	Formation of nuclear bomb
2) N	Nuclear atmosphere
3) N	Making holes in metalic case by nuclear radiations
4) T	The aftermath of an atomic explosion
23.The phe	enomenon of pair production is
1) P	roduction of an election and a positron from γ-rays
2) Io	onisation of neutral atom
3) E	ejection of an electron from a nucleus
4) E	Ejection of an electron from metal surface when exposed to uv light
	Pair production is a Process In which energy is converted in to matter $\gamma \rightarrow e^+ + e^-$
24. The B.H	E. per nuclear is almost constant many nuclei. To what characteristic of
	si per maerear is annost constant many maeren. To what enaracteristic of
	ar forces does it point?
the nuclea	
the nuclea	r forces does it point ?
the nuclea 1) Saturati 2) 3) attrac	ve nature 2) Short range
the nuclea 1) Saturati 2) 3) attrac	ve nature 2) Short range ctive nature 4) Exchange force
the nuclea 1) Saturati 2) 3) attract 25. Which of 1) Proton	ve nature 2) Short range ctive nature 4) Exchange force f the following is most unstable?
the nuclea 1) Saturati 2) 3) attract 25. Which of 1) Proton (: Tl	ve nature 2) Short range ctive nature 4) Exchange force f the following is most unstable ? 2) Neutron 3) Electron 4) alpha parti
the nuclea 1) Saturati 2) 3) attract 25. Which of 1) Proton (: Ti	reforces does it point? ve nature 2) Short range ctive nature 4) Exchange force f the following is most unstable? 2) Neutron 3) Electron 4) alpha parti me life time of free neutron is about 14 minutes)
the nuclea 1) Saturati 2) 3) attract 25. Which of 1) Proton (: Ti	reforces does it point? ve nature 2) Short range ctive nature 4) Exchange force f the following is most unstable? 2) Neutron 3) Electron 4) alpha parti the life time of free neutron is about 14 minutes) le nucleic, the number of neutrons (N) is related to the number of Z in neural atom in general as
the nuclea 1) Saturati 2) 3) attract 25. Which of 1) Proton (∴ Ti 26. In stable protons 1) N ≥ Z 2	reforces does it point? ve nature 2) Short range ctive nature 4) Exchange force f the following is most unstable? 2) Neutron 3) Electron 4) alpha parti he life time of free neutron is about 14 minutes) le nucleic, the number of neutrons (N) is related to the number of Z in neural atom in general as
the nuclea 1) Saturati 2) 3) attract 25. Which of 1) Proton (∴ Ti 26. In stable protons 1) N ≥ Z 2	ve nature 2) Short range ctive nature 4) Exchange force f the following is most unstable? 2) Neutron 3) Electron 4) alpha partime life time of free neutron is about 14 minutes) le nucleic, the number of neutrons (N) is related to the number of Z in neural atom in general as 1) $N = Z$ 3) $N < Z$ 4) $N > Z$ drogen number of neutrons is zero is an exception otherwise $N \ge Z$ in
the nuclea 1) Saturati 2) 3) attract 25. Which of 1) Proton (∴ Ti 26. In stable protons 1) N ≥ Z 2 In Hyerall case	ve nature 2) Short range ctive nature 4) Exchange force f the following is most unstable? 2) Neutron 3) Electron 4) alpha partime life time of free neutron is about 14 minutes) le nucleic, the number of neutrons (N) is related to the number of Z in neural atom in general as 1) $N = Z$ 3) $N < Z$ 4) $N > Z$ drogen number of neutrons is zero is an exception otherwise $N \ge Z$ in
the nuclea 1) Saturati 2) 3) attract 25. Which of 1) Proton (∴ The stable protons 1) N ≥ Z 2 In Hydrall case 27. The average at the stable protons 1) The stable protons 26. In stable protons 1) N ≥ Z 2	ve nature 2) Short range etive nature 4) Exchange force f the following is most unstable? 2) Neutron 3) Electron 4) alpha particle life time of free neutron is about 14 minutes) le nucleic, the number of neutrons (N) is related to the number of Z in neural atom in general as 2) $N = Z$ 3) $N < Z$ 4) $N > Z$ drogen number of neutrons is zero is an exception otherwise $N \ge Z$ in
the nuclea 1) Saturati 2) 3) attract 25. Which of 1) Proton (∴ The stable protons 1) N ≥ Z 2 In Hydrall case 27. The aver 1) 8 even	ve nature 2) Short range ctive nature 4) Exchange force f the following is most unstable? 2) Neutron 3) Electron 4) alpha partime life time of free neutron is about 14 minutes) the nucleic, the number of neutrons (N) is related to the number of Z in neural atom in general as $1 \times 10^{-2} \times 1$

1) 15 2) 11 3) 7 4) 6
$$\begin{cases}
5B^{10} + 0n^{1} \rightarrow x^{n} + 2He^{4} \\
10 + 1 = n + 4 \\
N = 11 - 4 = 7
\end{cases}$$

- 30. The energy released in the fission of U^{235} is about
 - 1) 200ev 2) 200kev
- 3) 20ev
- 4) 200Mev
- 31. The main source of energy on the sun is
 - 1) Gravitational contraction
 - 2) The burning of Hydrogen in the oxygen
 - 3) Fission of uranium present in the sun
 - 4) The energy liberated in the fission of protons during the synthesis of heavier nuclei

[Fusion of Hydrogen in to Helium is the major source of release of energy of on the sun]

- 32. The fusion occurs at high temperature because
 - 1) Atoms are ionized at high temperature
 - 2) Molecules breakup at high temperature
 - 3) Nuclei break up at high temperature
 - 4) Kinetic energy is high enough to over come the repulsion between nuclei [High energy is required to merge nuclei]
- 33. The critical mass of uranium is
 - 1) Minimum mass needed for chain reaction 2) 1 kg equivalent
 - 2)3)75 kg

4) The rest mass is equivalent to 10^{20} joules.

[Ans :1 The size of fission able material need for steady or sustained NCR so that K=1 Reproduction factor If K>1, the stage is super critical leads in explosion If K<1, subcritical, the chain reaction gradually stops]

Neutron Multiplication factor K = rate of neutron production

rate of neutron loss

34.	In β - decay is holds good acc to Neutrino hypothesis
	1) Principle of conservation of energy 2) Principle of conservation of
	angular momentum 3) Both (1) and (2) 4) None of these
35.	Which of the following is not correct?
	1) A free proton is stable
	2) Inside the nucleus, a proton can change in to a neutron and vice versa.
	3) The life time of proton is greater than our universe
	4) A free neutron cannot change into a proton
	Note: A free neutron can change into a proton but a free proton can not
	change into a neutron
36.	In decay daughter nucleus has the same mass number and atomic number as
	those of parent nucleus
	α - decay 2) β - decay 3) γ - decay 4) none of these
	$(: \gamma - ray photon do not have rest mass or any change)$
37.	The neutrons produced after fission are called Numbers
	1) Thermal 2) secondary 3) both 1 & 2 4) none of these
38.	1 a.m.u is equal to
	1) $\frac{1}{25}$ mass of F_2 molecule
	2) $\frac{1}{14}$ mass of N ₂ molecule
	3) $\frac{1}{12}$ mass of 1 atom of C ¹² so top
	4) $\frac{1}{16}$ mass of O_2 molecule
39.	The atoms of same element having different masses but same chemical
	properties are called
	5) Isotopes 2) Isobars 3) Isotones 4) Isomers
40.	In any fission process the ratio of mass of fission products to the mass of fission
	parent nucleus (fission reactants) is
	1)=0 2) > 1 3)< 1 4) none of these

- 41.If r_1 and r_2 are the radii of atomic nucleli of mass number 64 and 125 respectively, then the ratio r_1/r_2 is
 - 1) $\frac{5}{4}$ 2) $\frac{4}{5}$ 3) $\frac{64}{125}$ 4) $\sqrt{\frac{64}{125}}$
 - $[R_1/R_2 = (A_1/A_2)^{1/3} = (\frac{64}{125}) = \frac{4}{5}]$
- 42. B.E. per nucleon plot against the mass number for stable nucleii is shown in the figure. Which curve is correct?
 - 1)A
- 2) B
- 3) C
- 4) D

- 43. The dependence of B.E. per nucleon (B_N) on the mass number A is represented by
- 44. by

- 45. The size of an atom is of the order of
 - $1)1A^{0}$
- 2) 1F
- 3) 1 nm
- 4) 1µ
- 46. The mass of neutron is the same as that of -----
 - 1) A proton
- 2) an electron
- 3) a meson
- 4) none of the these
- 46. Which one of these is non divisible?
 - 1) Nucleus
- 2) proton
- 3) atom
- 4) photon
- 47. 1 amu cannot be expressed in
 - 1) Joule
- 2) Newton
- 3) eV
- 4) KWh

[Options 1, 3, & 4 are units of energy]

48. A is the mass number of an element. The volume of the nucleus of an atom this element is proportional to

51.

52.

1) Deuteron 2) α particle 3) Neutron $_{1}\text{H}^{3} + _{1}\text{H}^{1} \rightarrow _{2}\text{He}^{4} (\alpha \text{ particle})$

55.	Percentage o	f original n	umber of ato	oms in a radioa	active sample remaining at
	the end of one	mean life is			
	1)50 2)60	3) 63	4) 37	1	
56.	C ¹⁴ decays w	ith a half life	of about 58	00 years. In a	sample of bone, the ratio of
	C ¹⁴ to C ¹² is f	Sound to be $\frac{1}{4}$	of what it i	s in free air .	This bone may belongs to a
	period about	x centuries a	go, where x i	s nearest to	
	1)2 x 58	2) 58	$3)\frac{58}{2}$	4) 3 x 58	
57.	T_1 and T_2 are	e the half liv	es of two ra	dioactive elem	nents of decay constants λ_1
	and λ_2 respec	tively Then	the value of	T_1/T_2 is	
	1) $\lambda_2 = \lambda_1$	2) λ_1 - λ_2	3) λ_1/λ_2	4) λ_2/λ_1	
58.	A radioacti	ve element h	as a half life	of 1 day. Ther	n 1000 atoms of the element
	reduce to 12	25 atoms in c	lays		
	1) 3	2) 4	3) 8	4) 125	
59	. A nuclear r	eactor using	U ²³⁵ has a p	ower of 1W.	Number of uranium atoms
		fission per s			
	1) 3×10^9	2) 10 ⁶	3) $3x10^{10}$	4) $3x10^8$	
60.	_	.B.E for stabl			
	1) 9 – 10	2) 8 – 9	3) 7 – 8	4) 6-7	
61.	Rate of radio	•		·	
	1) A magnet	ic field		electric field	
_	3) using a	·	,	one of these	
62.		_			s half life of 10 days. The
	number of ato				
	1) 1500	2) 1414	3) 586	4) 500	6.0.000 2 FFI
63.			_	_	of 0.0002. The mass of the
<i>c</i> 1	·	14.028	2) 14.0028	·	
64.	·			ce changes with	
_ =	•		•	-	4) none of these
65.				oactive elemer	1t 1s
	1) 250	2) 2000	3) 4000	4) 1600	
66.	One commo	on property o	ı radioactive	radiations is	

	1) All are e-m radiations 2) all move with velocity of light
	3) all affect photographic plate 4) None of these
67.	When an α - particle is accelerated by a p.d of 1V, the energy gained by it is $\underline{\ }$ ev
	1) 4 2) 1 3) 2 4) 0.5
68.	A nuclear reactor producing radio isotopes is called
	1) Breeder reactor 2) power reactor 3) both 1 & 2 4) research reactor
69.	Energy released due to annihilation of 1 mg of matter is
	1) 9×10^{10} 2) 9×10^{16} 3) 3×10^{16} 4) 9×10^{8} J
70.	Nuclear density of the order of kg m ⁻³
	10^{10} 2) 10^7 3) 10^{16} 4) 10^{17}
71.	Neutrons are more effective than protons s projective to induce nuclear reaction because
	1) Protons are less stable 2) neutrons are more penetrating
72.	3) Neutrons have no charge 4) none of the above If T is half is the half life of a radioactive element, time taken for N atoms in a sample to decay is 1) $1000 2) 3) NT 4) \frac{T}{N}$
72	24
73.	The packing fraction of Hydrogen atom of mass number 1 is 0.0078. Then mass of H – atoms is 1) 1.0022 2) 1 3) 0.9022 3) 1.0078
74.	The number of α and β particles emitted in the reaction $_{92}U^{238} \rightarrow _{82}pb^{206}$
	respectively is 1) 8,6 2) 6,8 3) 8, 10 4) 8,8
75.	A triton contains proton and neutrons
	1) 1, 4 2) 1, 3 3) 1, 1 4) 1, 2
76.	After certain lapse of time, the fraction of radioactive polonium is found to be
	12.5% of initial quantity. If the half life of polonium is 138 days, then duration
	of time lapse isdays.
	1) 34.5 2) 276 3) 414 4) 125
77.	Mean life of a radioactive clement is 1 year. Then it's half life (in years) is
	1) 0.8 2) 1 3) 0.693 4) 0.5
	SCATTERING OF LIGHT
78.	Scattered light is
	1) Unpolarised 2) plane polarized 3) partially 4) both 2 & 3
79.	Scattering of light by smoke is an example of

	1) Tyndall scattering 2) Incoherent scattering	
	3) Raman effect 4) none	
80.	According to Rayleigh the intensity of scattered light is inversely proportion	al
	to 1) λ^2 2) λ^3 3) λ^4 4) λ	
81.	During Rayleigh scattering, the most scattered colour is	
	1) Blue 2) red 3) violet 4) yellow	
82.	The example for incoherent scattering is scattering	
	1) Raman 2) Rayleigh 3) Tyndall 4) none of these	
83.	In Raman spectrum spectral lines of more intensity are called lines	
	1) Stokes 2) Antistokes 3) Raman 4) none of these	
84.	The sky appear in the absence of earth's atmosphere	
	1) Violet 2) black 3) red 4) blue	
85.	Supports quantum theory of radiation,	
	1) Tyndall effect 2) Rayleish effect	
	3) Raman effect 4) none of these	
86.	A composite beam of light containing wavelengths 440 nm and 550 nm	is
	passed through a gas. In a given direction, the ratio of intensity of scattered	ed
	light of those wavelengths will be	
	1) 125 : 256 2) 256 :125 3) 256 : 625 4) 625 : 256	
	<u>LASERS</u>	
87.	Laser beam of power 10 ¹⁰ W is focused upon an object o area 10 ⁻² cm ² . The	ne
	intensity of the beam in W m ⁻² is	
	1) 10^6 2) 10^{12} 3) 10^{16} 4) 10^{18}	
88.	The incorrect statement of the following if	
	1) Laser is coherent 2) laser light do not consist of several wavelengths	
	3)Laser beam is highly collimated 4) laser stands for light amplification by	у
	by spontaneous emission of radiation	
89.	An example of pulsed laser is laser	
	1) $He - N_e$ 2) Co_2 3) Ruby 4) semiconductor	
90.	If atom* represents atom in the excited state, then stimulated emission is	
	Atom * \rightarrow atom + photon 2) atom + photon \rightarrow atom + photon	

	3) atom * + photon \rightarrow atom + 2 photon
	4) $atom^* + photon \rightarrow atom + photon$
91.	The atom remains for longer period of about 10 ⁻³ s in
	1) Ground 2) meta stable state 3) excited state 4) non
92.	A laser device used to measure large distances on pulse echo method is called
	1) Sonar 2) Radar 3) Lidar 4) none of these
93.	The function of xenon flash rube in a ruby laser is
	1) Optical pumping 2) spontaneous emission
	3) to absorb photons 4) slow down photons
94.	Laser beam is highly coherent because photons
	1) Same energy 2) same direction 3) same energy 4) all these
	Elementary particles
95.	Elementary particles that are weakly interacting are called
	1) Leptons 2) neutron 3) position 4) meson
96.	There are types of leptons exist
	1) 3 2) 4 3) 5 4) 6
97.	The spins of protons, neutrons and electrons are all
	1) 0 2) 1 3) 2 4) 1/2
98.	Elementary particles that have strong interaction and have half integral spins
	are called
	1) Leptons 2) Hadrons 3) Baryons 4) mesons
99.	The Various types of quarks are called
	1) Leptons 2) Hadrons 3) strange particles 4) flavors
100.	Baryons consist of quarks.
	1) Two 2) three 3) four 4) five
101.	Particles that have fractional multiples of electron charge are called
	1) Quarks 2) leptons 3) banyans 4) mesons
102	The required condition to achieve laser action in a system is:
1)) state of population inversion
2)	existence of a metastable state
3)	confinement of emitted photon for amplification
4)	all of the above