ELECTRO MAGNETIC INDUCTION

 A Circular coil is placed near a current carrying conductor. The induced current is anti clock wise when the coil is,

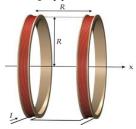
1. Stationary

2. moved away from the conductor

3. Moved towards the conductor *

4. when the current in the conductor increases.

2) A Circular coil is placed near a current carrying conductor. The induced current is clock wise when the coil is,


1. Stationary

2. moved away from the conductor*

3. moved towards the conductor

4. when the current in the conductor increases.

3) Two coils carrying currents I_1 and I_2 placed with their planes parallel [I_1 and I_2 are in the same sence] approach each other.

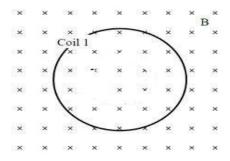
1. Both I₁ and I₂ will increase.

2. I₁ increases and I₂ will decrease

3. I_1 decreases and I_2 will increase.

4. Both I₁ and I₂ will decrease *

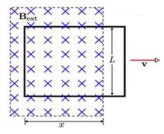
4) Two coils carrying currents I_1 and I_2 placed with their planes parallel [I_1 and I_2 are in the opposite sence] approach each other.


1. Both I₁ and I₂ will increase. *

2. I₁ increases and I₂ will decrease

3. I₁ decreases and I₂ will increase.

4. Both I₁ and I₂ will decrease


5) A circular coil of radius R in the plane of the paper is moved perpendicular to a magnetic field B. the magnitude of the induced emf is

- 1. $\pi R^2 [dB/dt]^*$.
- $2.2\pi R$ [dB/dt]
- 3. $2\pi R [dR/dt] Ø = BA$
- 4. $2R[d\pi/dt] \mod e = d/dt(\emptyset)$

Ans: e = d/dt(BA), $A = \pi R^2$ $e = \pi R^2 [dB/dt]$

6) When a rectangular coil moved out of a region of magnetic intensity B with a velocity v, the induced emf is e= Blv.If R is the resistance of the coil, force required to pull the coil out with constant velocity v is,

- 1. $B^2 I^2 v/R^*$ 2. $B I v^2/R$
- 3. B l v/R 4. B l v/R

Ans: current i = e/R = Blv/R $F = Bil = BlxBlv/R = B^2 l^2 v/R$

- 7) A coil of wire is held with its plane horizontal to the earth's surface and a small bar magnet dropped vertically down through it. The magnet will fall with a;
 - 1. constant acceleration = g
- 2. constant acceleration > g
- 3. constant acceleration < g
- 4. Non uniform acceleration < g*

8) An electron moves along a straight line [from west to east in the plane of the paper] which lies in the same plane as circular loop of conducting wire. What will be the direction of the induced current in the loop?

 Anticlockwise*
 Clockwise

 Alternating
 No current will be induced in the loop.

Ans: Real current [motion of electron] - west to East – conventional Current - east to West –

Ans: Real current [motion of electron] - west to East – conventional Current - east to West – mag-field in to the paper - Increase in flux – anticlockwise current in the loop.

- 9) Magnetic flux \emptyset in a closed circuit of resistance 14 Ω varies with time in accordance to the equation, $\emptyset = 12t^2 5t 5$. The magnitude of the induced current in the circuit at t = 0.15 second is
 - 1) 100mA*

2) 10mA e

3) 1mA

- 4) 1000mA
- 10) A circuit has a self inductance of 1 H and carries a current of 2A. To prevent sparking when the circuit is broken, a capacitor which can withstand 400 volts is used. The least capacitance of the capacitor connected across

the switch is,

- 1. 12.5μF
- 2. 25µF *
- 3. 2.5μF
- 4. 5μF
- 11) A 10 Ω resistor and a 20 Ω resistor are in series with a 2V battery and a key. An ideal inductor of 10 mH is connected across 20 Ω resistor. The key is inserted at t=0. The final value of current in 10 Ω resistor is
 - 1. 2 A

2. 200mA*

3. 100mA

4. 3/40A

12) An inductance coil has a resistance of 100 Ω . When an ac signal of 1kHz is applied across the coil, the current lags behind the voltage by 45°.

The inductance of the coil is,

1. 10mH 2. 12mH 3. 16mH * 4. 20mH

Ans:- $\tan \emptyset = \omega L/R = 2\pi f L/R$, $\emptyset = 45.1 = 2\pi f L/R$, $L = R/2 \pi f = 1/20 \pi = 15.923 = 16 mH$

- 13) The ac voltage applied to an impedance of 50 Ω is given by v = 100 sin (50 π t). Ac meters are connected to the circuit reads,
 - 1.70V, 1.4A*

2. 100V, 2A

3. 140V, 2A

4.50V,5A

Ans: Ac meters read rms values.

$$V = V_0 \sin \omega t$$
, $V_0 = 100$,

$$V_{rms} = 100/\sqrt{2} = 70V I_{rms}$$

$$= V_{rms} / R = 70/50 = 1.4A$$

14) An RLC circuit consists of R = 40Ω , L = 5H, C = 80μ F. The resonance

frequency is

1.20/π Hz

2. 25/π Hz *

3. 2.5/π Hz

4. 200/π Hz

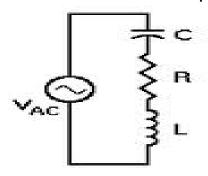
Ans: $f_r = 1/2 \pi V[LC]$

 $= 1/2 \pi \sqrt{[5x0.8x10^{-4}]}$

 $= 1/2 \pi [100/2]$

 $f_r = 50/2\pi = 25/\pi$

- 15) A series RLC circuit consists of R = 40 Ω , L = 5H, C = 80 μ F. The impedance at resonance f_r = 25/ π Hz At resonance Z = R
 - 1. 40 Ω ,*


2. 80 Ω ,

3. 125 Ω,

4.85 Ω ,

16) A series RLC circuit consists of R = 40 Ω , L = 5H, C = 80 μ F connected to an ac source v_{rms} = 200V. f = 25/ π Hz

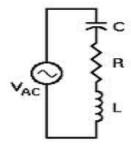
The max value of current and rms pd across the inductance at resonance is

1. 5V2 A,1250V *

2. √5 A,125V

3. √2 A, 12.5V

4. 5A,1.25V


Ans:

 $I_0 = \sqrt{2} V_{rms} / R = \sqrt{2} x200 / 40 = \sqrt{2} x5 = 5\sqrt{2}A$

 $I_{rms} = 200/40 = 5A.rms pd = I_{rms} \times 2\pi f_r$

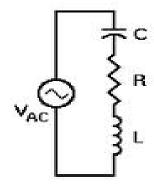
 $L = 5x2\pi \times 25 / \pi \times 5 = 1250V$

17) A series RLC circuit consists of R = 40 Ω , L = 5H, C = 80 μ F connected to an ac source v_{rms} = 200V. F = 25/ π Hz The rms value of current and rms pd across the resistor at resonance is

1. √2 x5 A,1250V

2. √5 A,125V

3. √2 A, 12.5V


4. 5A,200V*

Ans:

 $I_0 = \sqrt{2} V_{rms} / R I_0 = \sqrt{2} \times 200 / 40 =$

 $v2x5 A I_{rms} = 200/40 = 5A. v_{rms} = 200V.$

18) A series RLC circuit consist of R = 40Ω , L = 5H,C = 80μ F connected to an ac source v_{rms} = 200V,f = $25/\pi$ Hz The max value of current and rms pd across the capacitor at resonance is

1.√2 x5 A,1250V *

2. **V5** A,125V3.

3. √2 A, 12.5V

4. 5A,1.25V

Ans:

 $I_0 = \sqrt{2} v_{rms}/R = \sqrt{2} x200/40 = \sqrt{2} x5 A$

 $I_{rms} = 200/40 = 5A$.

rms pd across the capacitor

= $I_{rms} \times 1 / 2\pi f_r C$

= $[5x[1/(2\pi \times 25/\pi \times 80x10^{-6})] = 1250V$

- 19) At resonance in a series resonance circuit the phase difference between pd across the inductor and the pd across the capacitor is
 - 1. 90°
- 2. 100°
- 3. 180⁰
- 20) At resonance in a series resonance circuit the phase difference between pd across the resistor and the pd across the capacitor is
 - 1. 90⁰*
- 2.100°
- 3. 180⁰
- 4.190°
- 21) At resonance in a series resonance circuit the phase difference between pd across the resistor and the pd across the inductor is
 - 1. 90⁰*
- 2. 100°
- 3. 180°
- 4. 190°

22) In an inductor the current varies with time as I = 6+16t and induces an emf of 16mV in the inductor. The self inductance of the coil is

1. 5mH 2. 5mH 3. 6.25mH 4. 1Mh* Ans:- mod e = L dl / dt , 16mV = L d / dt[6+16t] 16 x10⁻³ = Lx16 L = 1mH

23) In an inductor the current varies with time as I = 6+16t and induces an emf of 16mV in the inductor .The power supply to the inductor at t = 9 second is

1. 1mW 2. 21mW 3. 2.4W * 4. 24W Ans: $p = VI = 16 \times 10^{-3} \times [6+16t] \rightarrow t = 9$ $p = 16 \times 10^{-3} \times 150 = 2400 \times 10^{-3}$ 2.4 watt.

24) Two coils have self inductance of 16 mH and 9mH. The coupling coefficient between them is 1.2. the mutual inductance between the two coils is

1. 14.4mH* 2. 1.4.mH 3. 4mH 4. 1mH Ans:- M = k $\sqrt{(L_1 L_2)}$

25) The impedance of an ideal LC circuit at resonance is

1. Infinity 2. Zero*
3. $V(X_1^2 - X_C^2)$ 4. $V(X_1 - X_C)^2$

26) The frequency at which the inductive reactance of a pure inductance coil [L = 21/66 mH] is 500 ohm is

1. 2.5 kHz 2. 125 kHz 3. 250 kHz* 4. 12.5 kHz $X_L = 2 \pi f L$ Ans: $500 = 2x[22/7]x f x [21/66]x 10^3$ $f = 5x10^5 / 2 = 2.5x10^5 f = 250 \text{ kHz}$

27) A current I flows through an inductance coil of self inductance L henry. The dimension of I²L is:

1. MLT⁻²A 2. ML²T⁻²A² 3. ML²T^{-2*} 4. MLT⁻²

28) A voltmeter measures a pd of V volt across a capacitor of capacitance C, The unit of V²C is

Ampere metre
 Volt per coulomb
 Joule*

29) In a series RLC circuit the PD across the resistor is 80V, across the inductor is 40V and across the capacitor is 100V. The EMF of the AC source (f = 50Hz) is

1. 220V 2.140V 3. 20V 4. 100V* Ans: $V^2 = V_R^2 + [V_L - V_C]^{2}$, $V^2 = [80^2 + (40 - 100)^2]$ $V^2 = 10000 V = 100V$

30) A current of 5A is flowing at 220V in the primary coil of a transformer. If the voltage across the secondary is 2200V when the power loss is 50% the current in the secondary is

1. 5A 2. $1A^*$ 3. 0.5A 4. 0.25AAns: $V_p I_p = [50/100] \times V_s I_s$ $= [50/100] \times V_s I_s 220 \times 5$ $= 0.5 \times 2200 \times I_s I_s = 1A$

31) The resonant frequency of a series RLC circuit is 10 k Hz. The values of the capacitance and the inductance are increased to 4 times their original value the new resonance frequency in kHz will be

1. 2.5 2. 40* 3. 1.25 4. Zero

32) A vertical copper disc of diameter V(7/22) metre makes 600 revolutions per minute about a horizontal axis passing through its center a uniform magnetic field of 0.22 tesla acts at an angle 30° to the normal to the plane of the disc. The PD between the center and the rim of the disc is

1) 200V 2) 350V 3) 35V 4) 0.275V*

33) The rails of a railway track are 2m apart and assumed to be insulated from one another. The dip at the place is 45° and the horizontal component of the earth's magnetic field is 0.0004 tesla. If the velocity of the train is 90 kmph the emf induced is V

1) 2,5V 2) 0.25V 3) 0.8V 4) 0.08V*

34) The frequency at which the capacitive reactance of a capacitor at 10 kHz becomes 3.14 % of its original value is f = 10000 Hz

1. 50 Hz 2. 100Hz 3. 200Hz 4. 314Hz*

Ans: $1/2\pi fC = [3.14/100]$ $[1/2\pi f'C]$ f'/f = [3.14/100] $f' = [3.14/100] \times f$ $= [3.14/100] \times 10000$ = 314Hz 35) The reactance of a coil which exhibits an effective opposition of 25 Ω to AC (50Hz) and 20 Ω to DC is

1.25
$$\Omega$$
 2. 20 Ω 3. 15 Ω * 4.10 Ω Ans: $Z^2 = \{(R^2 + X_L^2) = \{(R^2 + X_L)^2\}$ $(25)^2 = (20)^2 + X_L^2 X_L = 15 \text{ ohm}$

36) The impedance of a ideal LC circuit at resonance is

1. Maximum 2. V2 times the original value

3. 1/v2 times the original value 4. zero*

37) The frequency at which the inductive reactance of a coil at 10000 Hz becomes 3.14% of its original value is

1. 50 Hz 2. 10 x 10⁴Hz 3. 21.87 x 10⁴Hz 4. 31.85 x 10⁴ Hz *

Ans: $2\pi f L = [3.14/100] [2\pi f' L]$ $f' = f \times 100/3.14$

 $10000 \times [100/3.14] = 31.85 \times 10^4 \text{ Hz}$