Key Answers

TOPIC;- ELECTROSTATICS

- 1. A (Positively)
- 2. a (Negatively)
- 3. b (Benjamin Franklin)
- 4. b (Since a charge is conserved after electrification)
- 5. d
- 6. c
- 7. b
- 8. a
- 9. b
- 10. a
- 11(a) Cube has sin faces. Each face has a area = $5 \text{cm X } 5 \text{cm} = 25 \text{cm}^2$ =25 X 10^{-4}m^2
 - $^{\circ}$ Total Area (A) = 6 X 25 X 10^{-2} = 150 x 10^{-4} m²
 - $\sigma = q/A$, by substituting the values of q and A, we get
 - $\sigma = 4x10^2 \mu \text{C/m}^2$
- 18. (C) In the field E a Charge q experiences force F = ma = qE

$$a = \frac{qE}{m}$$
 After travelling a distance s=y it has a velocity V = $\sqrt{\frac{2qEy}{M}}$ $E_k = \frac{1}{2} \text{ mv}^2 = qEy$

17. (a) Two masses m and 2m, gets accelerated in an uniform electric field with an acceleration a_1 and a_2 , such that $a_1 = 2$ a_2 . But

$$\frac{E_{k1}}{E_{k2}} = \frac{a_1^2}{a_2^2} = \frac{2}{1}$$

19. (b) The Speed gained by a charged particles of different charges is directly proportional to the charge to its charge at same potential difference.

$$\frac{{V_A}^2}{{V_B}^2} = \frac{q_A}{q_B} = \frac{q}{4q} = \frac{1}{4}$$

$$\frac{V_A}{V_B}$$
 $\frac{1}{2}$

20. (a) Since the electrostatic force between two charges is inversely proportional to dielectric constant (K) and to the square of the distance between the two charges.

$$R=r/\sqrt{K}$$

- 22. (c) Because charge reside on the surface of the spheres, which is independent of mass of the spheres.
- 23. (d) p.d between two points $=w/q=2/20=10^{-1}$ volts
- 24. (c) Since the electric intensity at a point within the sphere is zero and at appoint outside sphere is inversely proportional to the square of the distance between the point and the center of the sphere.
- 25. (a) $q=+ne=+1.6x10^{-19}x10^{19}=+1.6$
- 26. (c) potential at the center of square= $V_0 = 9 \times 10^9 \times 10^{-6}$ $\left(\begin{array}{ccc} \underline{10} + \underline{5} & \underline{3} + \underline{8} \\ 1 & 1 & 1 \end{array} \right) = 9 \times 10^3 \times 20 = 180 \times 10^3 = 1.8 \times 10^5 \text{ volts}$
- 27. (a) potential of smaller drop=v α q/r Potential bigger drop =V α Q/R , But Q=nq and R=n^{1/3}r, substituting these values we get V=n^{2/3}v
- 28. (d) When a charge q is placed in the region uniform electric field experience a force f=ma=qxE a =qxE/m, After a time of 't' seconds it has a velocity (v) given by

v=u+ at = 0+ (qxE/m) t
v = (qxE/m) xt

$$E_K = (1/2)mv^2 = \frac{q^2E^2t^2}{2m}$$

- 29. (d) It means that the body has a deficit of electrons. Therefore the body is charged positively.
- 30. (a) $E_k = qxv = eV$ $(1/2) mv^2 = e x V$ $V^2 = 2e V / m =X10^6 m/s$
- $V^2 = 2e V/m =X10^{\circ} m/31. (c)$
- 32. (d) Because the charge q is moved once round the circle of radius r with a charge Q at the center is a equipotential surface.
- 33. (a)34. (a) Because mica is a dielectric material.
- 35. (c) Because the dielectric slab placed between the plates decrease the strength of electric field, which in turn decrease the potential.
- 36. (b) Before the slab is introduced =U= $(1/2) \text{ CV}^2$ $\frac{U}{U'} = \frac{C}{C'}$ After the slab is introduced =U' = $(1/2) \text{ C'V}^2$ $\frac{U}{U'} = \frac{C}{C'}$ (C/C')=1/K (U/U')=1/K
- 37. (c) Because the given circuit is the balanced wheatstone's network , $C_{AB} = C/2 + C/2 = C$
- 38. (c) Here there are combinations two capacitors in series of capacitances, $c_1 = \frac{2k_1 \epsilon_0 A}{d}$

and
$$c_2$$
 = $2k_2\epsilon_0A$ / d , Therefore effective capacitance C= c_1 c_2 / c_1 + c_2 C = $\underbrace{\epsilon_0A2k}_1k_2$ d (k_1 + k_2

39. (b) since two capacitors $2\mu F$ & $4\mu F$ are in parallel,therefore the pd across each of them is same. If v_1 is the pd across this combination, then it is given by v_1 =6X10⁻⁶X12/(6+6)X10⁻⁶=6volts

- 40.(b) Because in the figure it is the combination of two capicators in parallel of capacitances, $C_1 = \underline{k_1 \epsilon_0 A}$ and $c_2 = \underline{k_2 \epsilon_0 A}$, therefore its effective capacitance is $= C = c_1 + c_2 = \epsilon_0 A \underline{(k_1 + k_2)}$ 2d
- 41.(a) we have $C=\epsilon_o A/d$, $A=cd/\epsilon_o$ substituting the values we get = $1.694X10^3 m^2$
- 42.(d) we have common potential $V = (C_1V_1 + C_2V_2)/C_1+C_2$

$$V = 200$$
volts

- 43.(a) capacitance of bigger drop = $C = 4\pi\epsilon_0 R$ Capatiance of smaller drop = $c = 4\pi\epsilon_0 r$, but we have $R = n^{1/3} X r$, substituting this value we get $C = n^{1/3} c$, therefore $c = C/n^{1/3} = 0.5 \mu F$
- 44.(d) In the ckt the capacitors are connected to form a wheatstone's network .This network is balanced one. The effective capacitance between A&B is given by

$$C_{AB}=2+32/12=(14/3)\mu F$$

45.

- 46.(a) Because $C = n^{1/3}c = (125)^{1/3}c = 5c$
- 47.(d) Because Q α C
- 48.(a)
- 49.(d)

50.

- 51.(d) Because $C_m = Kc_a/2d$
- 52.(d)
- 53.(b)
- 54.(a)
- 55.(a)
- 56.(d) Because effective capacitance in series becomes C/n
- 57.(d)
- 58.(c) Because $C^{1}/C = d/d^{1}$, $C^{1} = 20\mu F$
- 59.(a) $V_2/V_1 = C_1/C_2 = 1\mu F/4\mu F = \frac{1}{4}$
- 60.(c) Because charge present in C_1 is equal to the charge stored in parallel combination of C_2 & C_3 .And according to law of conservation of energy we have $V = V_1 + V_2$