ELEMENTS OF NUMBER THEORY & CONGRUENCES

Lagrange, Legendre and Gauss

Mathematics

Vikasana – CET 2012
ELEMENTS OF NUMBER THEORY & CONGRUENCES

1) If \(a \neq 0, \ b \neq 0 \in \mathbb{Z} \) and \(a/b, \ b/a \) then

1) \(a=b \)
2) \(a=1 \)
3) \(b=1 \)
4) \(a=\pm b \)
Ans: is 4 known result.

If \(\frac{a}{b} \Rightarrow b = ma \Rightarrow (1)\) where \(m \in \mathbb{Z}\) & \(b/a \Rightarrow a = bn \Rightarrow (2)\) where \(n \in \mathbb{Z}\) from (1) & (2), \(a = (am)n = a(mn) \Rightarrow mn = 1\), possible if \(m=1 \& n=1\) or \(m=-1 \& n=-1\). For the values of \(n=1 \& -1\) then (2) \(\Rightarrow a = \pm b\)
2) 0 and 1 are

1) primes
2) composite numbers
3) neither prime nor composite
4) none of these
Ans: is 3 by defn. of prime & composite numbers it's implied
3) If \((ab,c) = 1 \& (a, c)=1\) then \((b, c)=\)

1) 1
2) c
3) b
4) none of the these
Ans: is 1

known result

\[(a, c) = 1, \ (b, c) = 1 \implies (ab, c) = 1\]
4) If p is prime number then p/ab ⇒

1) p/a
2) p/b
3) p/a or p/b
4) none of the these
Ans: is 3. known result

$p/ab \Rightarrow p/a \text{ or } p/b$
5) 111………1 (91 times) is

1) a composite number
2) a prime number
3) a surd
4) Irrational
Ans: is 1
since $91 = 7 \times 13$

$\underbrace{1111\ldots1}_{91 \text{ times}} = \underbrace{1111111}_{7 \text{ times}} \cdot \underbrace{1111111}_{7 \text{ times}}$ (13 factors)

\therefore it is divisible by 1111111. (7 times)

\therefore It is a composite number.
6) The number of positive divisors of 1400, including 1 and itself is

1) 18
2) 24
3) 22
4) 21
Ans: is 2

1400 = 2^3 \times 5^2 \times 7

\therefore T(1400) = (3+1) (2+1)(+1)

= 24
7) The sum of all positive divisors of 960 excluding 1 and itself is

1) 3047
2) 2180
3) 2087
4) 3087
Ans: is 3

960 = 2^6 \times 3 \times 5

\[S(960) = \left(\frac{2^{6+1} - 1}{3 - 1} \right) \left(\frac{3^{1+1} - 1}{3 - 1} \right) \left(\frac{5^{1+1} - 1}{5 - 1} \right) \]

= 127 \times 4 \times 6 = 3048

but 3048 – 960 – 1 = 2087.
8) If \((a+b)^3 \equiv x \pmod{a}\) then

1) \(x = a^2\)
2) \(x = b^3\)
3) \(x = a^3\)
4) \(x = b^2\)
Ans: is 2

\[(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3\]

\[\Rightarrow (a+b)^3 - b^3 = a(a^2 + 3ab + 3b^2) = ak\]

\[\Rightarrow a / [(a+b)^3 - b^3]\]

\[\therefore (a+b)^3 \equiv b^3 \pmod{a}\]
9) Which of the following statement is false?

1) $98 \equiv -7 \pmod{3}$
2) $67 \equiv 2 \pmod{5}$
3) $123 \equiv -4 \pmod{7}$
4) $240 \equiv 9 \pmod{11}$
Ans : is 3

123 + 4 = 127 is not a multiple of 7
10) If $100 \equiv x \pmod{7}$, then the least positive value of x is

1) 1
2) 3
3) 4
4) 2
Ans: is 4

\[
\frac{7}{(100 - x)} \text{ when } x = 2, \\
\frac{7}{98}
\]
11) When 5^{20} is divided by 7 the remainder is

1) 1
2) 3
3) 4
4) 6
Ans : is 3

\[5^3 = 125 \equiv -1 \pmod{7} \]

\[\therefore (5^3)^6 \equiv (-1)^6 \pmod{7} \]

\[5^{18} \cdot 5^2 = 1 \cdot 5^2 \pmod{7} \]

\[\therefore 5^{20} \equiv 25 \pmod{7} \equiv 4 \pmod{7} \]
12) The last digit in 7^{291} is

1) 1
2) 3
3) 7
4) 9
Ans : is 2

$$7^2 = 49 \equiv -1 \pmod{10}$$

$$\Rightarrow (7^2)^{145} \equiv (-1)^{145} \pmod{10}$$

$$7^{290} \equiv -1 \pmod{10}$$

also $$7 \equiv -3 \pmod{10}$$

$$\therefore 7^{190} \times 7 \equiv (-1)(-3) \pmod{10}$$

$$\therefore 7^{291} \equiv 3 \pmod{10}$$
13) The digit in the unit place of the number $183! + 3^{183}$ is

1) 7
2) 6
3) 3
4) 0
Ans : is 1

Unit place in $183!$ is 0 (∵ it is a factor of 10)

& $3^2 = 9 \equiv -1 \pmod{10}$

$(3^2)^{91} \equiv (-1)^{91} \pmod{10} = -1 \pmod{10}$

∴ $3^{182} \equiv -1 \pmod{10}$ also, $3 \equiv -7 \pmod{10}$

∴ $3^{182} \cdot 3 \equiv (-1) (-7) \pmod{10}$

∴ $3^{183} \equiv 7 \pmod{10}$
14) If \(-17 \equiv 3 \pmod{x}\), then \(x\) can take the value

1) 7
2) 3
3) 5
4) None of these

Mathematics
Vikasana – CET 2012
Ans: is 3

-17 - 3 = -20 is divisible by 5
15) The smallest positive divisor of a composite integer a (>1) does not exceed

1) a^2
2) $\sqrt[3]{a}$
3) a^3
4) \sqrt{a}
Ans: is 4

Known result

Mathematics

Vikasana – CET 2012
16) Which following linear congruences has no solution

1) $4x \equiv 1 \pmod{3}$
2) $3x \equiv 2 \pmod{6}$
3) $5x \equiv 3 \pmod{4}$
4) $2x \equiv 1 \pmod{3}$
Ans: is 2
Since \((3, 6) = 3\) & 3 does not divide 2
\[\therefore\] No solution
17) The relation congruence modulo \(m \) is

1) Reflexive
2) Symmetric
3) Transitive only
4) All of these

Mathematics
Vikasana – CET 2012
Ans: is 4

Known result

\[a \equiv b \pmod{m} \] is an equivalence relation

Mathematics

Vikasana – CET 2012
18) The least positive integer to which 79 x 101 x 125 is divided by 11 is

1) 5
2) 6
3) 4
4) 8
Ans : is 1
79 ≡ 2 (mod 11), 101 ≡ 2 (mod 11)
& 125 ≡ 4 (mod 11) multiplying these,
79x101x125 ≡ 2x2x4 ≡ 16 (mod 11)
but 16 ≡ 5 (mod 11)
∴ 79 x 101 x 125 ≡ 5 (mod 11)
19) If $p \equiv q \pmod{m}$ if and only if

1) $(p - q) / m$
2) $m/(p - q)$
3) m/p
4) m/q
Ans: is 2
by very defn. Of congruence
i.e. if $a \equiv b \pmod{m} \Rightarrow m/(a-b)$
20) When 2^{100} is divided by 11, the remainder is

1) 3
2) 5
3) 1
4) 2

Mathematics

Vikasana – CET 2012
Ans: is 3

$2^5 = 32 \equiv -1 \pmod{11}$

$\therefore (2^5)^{20} \equiv (-1)^{20} \pmod{11}$

$\therefore 2^{100} \equiv 1 \pmod{11}$
21) If \(a \equiv b \pmod{m} \) and \((a, m) = 1\), then

1) \((a, b) = 1\)
2) \((b, m) = 1\)
3) \((b, m) = a\)
4) \((a, b) = m\)
Ans: is 2

Known result

(a, m) = (b, m) = 1
22) If \(n \equiv 0 \pmod{4} \) then \(n^3 - n \) is divisible by

1) 6 but not 24
2) 12 but not 24
3) 24
4) 12 & 24
Ans : is 2

n is a multiple of 4

if n=4, \(n^3 - n = 60\)

\[\therefore 12/60, 6/60 \text{ but 24 does not divided by } 60\]

Thus 6 & 12 divide \(n^3 - n\).
23) If $195 \equiv 35 \pmod{M + 2}$ then
$m =$

1) 4
2) 5
3) 0
4) 7
Ans: is 3

\[(m+2) / (195-35) \Rightarrow (m+2) / 160\]

\[\Rightarrow m+2 \geq 2\]

\[\Rightarrow m+2 = 2, 4, 5, 8 \ldots \ldots \text{etc.}\]

\[\Rightarrow m = 0, 2, 3, 6 \text{ etc.,}\]

\[\therefore (3) \text{ is the answer}\]
24) If $2^8 \equiv (a+1) \pmod{7}$ is true then a is

1) 3
2) 4
3) 0
4) 5

Mathematics

Vikasana – CET 2012
Ans: is 1

\[2^6 = 64 \equiv 1 \pmod{7} \]

\[2^6 \cdot 2^2 = 1 \cdot 2^2 \pmod{7} \]

\[2^8 \equiv 4 \pmod{7} \]

\[\Rightarrow a + 1 = 4 \text{ i.e., } (a = 3) \]
25) The unit digit in 13^{37} is

1) 5
2) 2
3) 6
4) 3
Ans: is 4

\[13^2 = 169 \equiv -1 \pmod{10} \]

\[(13^2)^6 \equiv (-1)^6 \pmod{10}\]

\[13^{36} \cdot 13 \equiv 1 \cdot 13 \pmod{10}\]

\[\therefore 13^{37} \equiv 3 \pmod{10}\]
26) The number of incongruent solutions of $24x \equiv 8 \pmod{32}$ is

1) 2
2) 4
3) 6
4) 8
Ans: is 4 by thm.

\[(24, 32) = 8 \& \frac{8}{8}\]

\[\therefore\text{ the number of incongruent solutions} = 8\]
27) The remainder when $3^{100} \times 2^{50}$ is divided by 5 is

1) 3
2) 4
3) 1
4) 2
Ans : is 2

\[3^2 = 9 \equiv -1 \pmod{5} \implies (3^2)^{60} = (-1)^{50} \pmod{5} \]

\[\therefore 3^{100} \equiv 1 \pmod{5} \implies (1) \]

& \[2^2 = 4 \equiv -1 \pmod{5} \implies (2^2)^{25} = (-1)^{25} \pmod{5} \]

\[\therefore 2^{50} \equiv -1 \pmod{5} \implies (2) \]

(1) x (2) \[\rightarrow 3^{100} \times 2^{50} \equiv 1 \times -1 \pmod{5} \equiv -1 \pmod{5} \]

but \[-1 \equiv 4 \pmod{5} \]

\[\therefore 3^{100} \times 2^{50} \equiv 4 \pmod{5} \]
28) If a and b are positive integers such that $a^2 - b^2$ is a prime number, then $a^2 - b^2$ is

1) $a+b$
2) $a - b$
3) ab
4) 1
Ans: is 1

\[a^2 - b^2 = (a+b)(a-b) \] is a prime.

\[\therefore (a+b)(a-b) \] is divisible by 1 or its self. But \(a - b < a+b \) \(\therefore a-b=1 \)

\[\therefore a^2 - b^2 = a+b \]
29) Which of the following is a prime number?

1) 370261
2) 1003
3) 73271
4) 667
Ans: is 1

$\frac{17}{1003}, \frac{11}{73271} \& \frac{29}{667}$. but none of the prime & less than 608 divides the first No.
30) Which of the following is false?

1) An odd number is relatively prime to the next even number.
2) $3x \equiv 4 \pmod{6}$ has solution.
3) $ax \equiv bx \pmod{m} ; x \neq 0 \Rightarrow a \equiv b \pmod{m}$
4) $a.x + b.y = d \Rightarrow (a, b) = d$
Ans: is 2

(3,6) = 3 but 3 does not divides 4

∴ no solution.

Remaining are all known results

Mathematics

Vikasana – CET 2012
31) For all positive values of p, q, r, and s,

\[
\frac{(p^2 + p + 1)(q^2 + q + 1)(r^2 + r + 1)(s^2 + s + 1)}{pqrs}
\]

will not be less than

1) 81
2) 91
3) 101
4) 111
Ans: is 1

\[\frac{p^2 + p + 1}{p} = p + 1 + \frac{1}{p} \geq 3 \quad (\because \text{p is positive integer}) \]

Similarly,

\[\frac{q^2 + q + 1}{q} = q + 1 + \frac{1}{q} \geq 3 \quad \text{etc.} \]

\[\therefore \text{given expression is } \geq 3 \times 3 \times 3 \times 3 = 81. \]

\[\therefore \text{expression cannot be less than 81.} \]
32) If \((a+b)^n \equiv x \pmod{a}\), then \((n\) is a +ve integer)

1) \(x = a^2\)
2) \(x = a^n\)
3) \(x = b^n\)
4) none of these
Ans: is 3

\[(a+b)^n = a^n + \sum_{k=1}^{n} \binom{n}{k} a^{n-k} b^k + b^n\]

\[\therefore (a+b)^n - b^n = a \left[a^{n-1} + \sum_{k=1}^{n-1} \binom{n}{k} a^{n-k-1} b^k \right]
\]

\[(a+b)^n - b^n = ak \text{ where } k \in \mathbb{Z}.
\]

\[\therefore a/[(a+b)^n - b^n]
\]

\[\Rightarrow (a+b)^n \equiv b^n \pmod{a}
\]

\[\therefore x = b^n
\]
33) If \(27 = 189m + 24n \) then \(m \) & \(n \) are

1) unique
2) not unique
3) prime numbers
4) none of these
Ans : is 2

If \((a,b) = d \Rightarrow d = ax + by\)

where \(x, y \in \mathbb{Z}\). Here \(x, y\) are not unique.
34) If $2x \equiv 3 \pmod{7}$, then the values of x such that $9 \leq x \leq 30$ are

1) 12, 19, 26
2) 11, 18, 25
3) 10, 17, 24
4) None of these
Ans: is 1

The soln. is \(x \equiv 5 \pmod{7} \)

\[\therefore \text{Soln. set is } \{ \ldots 2, 5, 12, 19, 26, 33, \ldots \} \]

\[\therefore \text{required values of } x \text{ are } 12, 19, 26. \]
35) If p is a prime number and P is the product of all prime numbers less than or equal to p, then

1) $P - 1$ is a prime
2) $P + 1$ is not a prime number
3) $P + 1$ is a prime number
4) $P + 1$ is a composite number
Ans: is 3

Known result while proving the thm. The primes are infinite.
36) \(4x + 9 \equiv 3 \pmod{5}\) can be written as

1) \(x \equiv 5 \pmod{6}\)
2) \(x \equiv 3 \pmod{15}\)
3) \(x \equiv 6 \pmod{15}\)
4) None of these
Ans : is 3

when \(x=6 \), \(4 \cdot 6 + 9 = 33 \equiv 3 \pmod{5} \)

it satisfies the given congruence.

Hence (3) is right answer
37) If \((3-x) \equiv (2x-5) \pmod{4}\), then one of the values of \(x\) is

1) 3
2) 4
3) 18
4) 5

Mathematics

Vikasana – CET 2012
Ans : is 2

3-x-2x+5 = -3x+8 is divisible by 4

when x=4, -3 (4)+8 = -4 is divisible by 4.
38) The remainder when 64x65x66 is divided by 67 is

1) 60
2) 61
3) 62
4) 63
Ans: is 2

\[64 \times 65 \times 66 \equiv (-3) (-2) (-1) \pmod{67} \]
\[\equiv -6 \pmod{67} \]
\[\equiv 61 \pmod{67} \]
GROUPS

Lagrange, Legendre and Gauss

Mathematics

Vikasana – CET 2012
GROUP

1) If x, y, z are three elements of a group and then $(xy^{-1}z)^{-1} =$

1) $x^{-1}y^{-1}z^{-1}$
2) $x^{-1}yz$
3) $z^{-1}yx^{-1}$
4) $(xy^{-1}z)^{-1}$
Ans: is 3 since $(a \star b)^{-1} = b^{-1} \star a^{-1}$.

Question is just extension of this property.
2) If \(a \ast b = \sqrt{a} + \sqrt{b} \), then \(\ast \) is a binary operation on

1) \(\mathbb{R} \)
2) \(\mathbb{Q}^+ \)
3) \(\mathbb{R}_0 \)
4) \(\mathbb{R}^+ \)
Ans: is 4
if $a = -1, b = 3$ then

$$a \star b = \sqrt{1 + \sqrt{3}} \in \mathbb{C}$$
3) The identity element of $a \star b = a^{b-1}$ is

1) 1
2) 0
3) 2
4) -1

Mathematics

Vikasana – CET 2012
Ans: \(\text{is 3} \)

\[
a \times e = a \Rightarrow a^{e-1} = a
\]

\[
\Rightarrow e - 1 = 1 \Rightarrow e = 2
\]
4) In the group of rational numbers under a binary operation \(\ast \) defined by \(a \ast b = a+b-1 \) then identity element is

1) 1
2) 0
3) 2
4) -1
Ans : is 1

\[a \times e = a \Rightarrow a + e - 1 = a \]

\[\therefore e - 1 = 0 \Rightarrow e = 1 \]
5) The set $G = \{ -3, -2, -1, 0, 1, 2, 3 \}$ w.r.t. addition does not form a group since.

1) The closure axiom is not satisfied
2) The associative axiom is not satisfied
3) The commutative axiom is not satisfied
4) Identity axiom is not satisfied
Ans: is 1 since 2, 3 ∈ G but 2 + 3 = 5 ∉ G
6) If \(a \star b = 2a - 3b \) on the set of integers. Then \(\star \) is

1) Associative but not commutative
2) Associative and commutative
3) A binary operation
4) Commutative but not associative
Ans: is 3

∀ a, b ∈ Z, a*b = 2a - 3b ∈ Z

(i.e., if a = 1, b = -2 then

2 * 1 - 3 * (-2) = 2 + 6 = 8 ∈ Z)
7) In the multiplicative of cube roots of unity the inverse of w^{99} is

1) w
2) 1
3) w^2
4) Does not exist.

Mathematics

Vikasana – CET 2012
Ans : is 2

\[\text{Ans : is 2} \]

\[W^3 = 1 \]

\[\therefore (W^3)^{33} = 1 \]
8) The incorrect statement is

1) In $(G, .) \ ab = ac \Rightarrow b = c, \ \forall \ a, b, c \in G$
2) Cube roots of unity form an abelian group under addition
3) In a abelian group $(ab)^3 = a^3b^3, \ \forall a, b \in G$
4) In a group of even order, there exists at least two elements with their own inverse.
Cube roots of unity; $1, w, w^2$

form an abelian group under multiplication.

Ans : is 2
9) If H & K are two subgroups of a group G, then identify the correct statement:

1) $H \cap K$ is a sub group
2) $H \cup K$ is a sub group
3) Neither $H \cup K$ nor $H \cap K$ is sub group
4) Nothing can be said about $H \cup K$ and $H \cap K$
Ans: is 1

Let $H = \{0, 2, 4\}$, $K = \{0, 3\}$ are subgroups of $G = \{0, 1, 2, 3, 4, 5\}$ under $+_6$

i.e., $H \cup K = \{0, 2, 3, 4\}$ is not closed

i.e., $2+3=5 \notin H \cup K$
10) In the group $G = \{e, a, b\}$ of order 3, a^5b^4 is

1) 3
2) ab
3) a
4) b
Ans: is 3

\[ab = e \Rightarrow (ab)^4 = e \]

i.e. \(a (a^4b^4) = ae \)

\[\Rightarrow a^5b^4 = a \]
11) In a group \((G, \ast)\), \(a \ast x = b\) where \(a, b \in G\) has

1) Unique solution
2) No solution
3) More than one solution
4) Infinite number of solutions
Ans: is 1

\[a \star x = b \Rightarrow a^{-1} \star (a \star x) = a^{-1} \star b \]

\[(a^{-1} \star a) \star x = a^{-1} \star b \Rightarrow x = a^{-1} \star b \]
12) The set of (non singular) matrices of order 2×2 over \mathbb{Z} under matrix multiplication is

1) Group
2) Semi group
3) Abelian group
4) Non-abelian group
Ans: is 2

\[I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in M \]

When \(A = \begin{bmatrix} 2 & 4 \\ 0 & 1 \end{bmatrix} \), \(|A| = 2 \) but \(A^{-1} = \frac{1}{2} \begin{bmatrix} 1 & -4 \\ 0 & 2 \end{bmatrix} \)

but \(\frac{1}{2} \notin \mathbb{Z} \)
13) Which of the following is a subgroup of \(G = \{0, 1, 2, 3, 4, 5\} \) under addition modulo 6

1) \(\{0, 2\} \)
2) \(\{0, 1\} \)
3) \(\{0, 4\} \)
4) \(\{0, 3\} \)
Ans : is 4
2 + 6 \cdot 2 = 4 \in \{0, 2\} \text{ etc.,}
but 3 + 6 \cdot 3 = 0
14) The set of integers is

1) Finite group
2) Additive group
3) Multiplicative group
4) None of these
Ans : is 2
15) The set of all integers is not a group under multiplication because

1) Closure property fails
2) Associative law does not hold good
3) There is no identity element
4) There is no inverse
Ans : is 4
Inverse 0 does not exists
(also $2 \in \mathbb{Z}$ but $2^{-1} = \frac{1}{2} \notin \mathbb{Z}$)
16) A subset H of a group (G, \cdot) is a subgroup of G iff:

1) $a, b \in H \Rightarrow a \cdot b \in H$
2) $a \in H \Rightarrow a^{-1} \in H$
3) $a, b \in H \Rightarrow a \cdot b^{-1} \in H$
4) H contains identity of G.
Ans: is 3
By thm.
17) \(Z_n = \{0, 1, 2, \ldots, (n-1)\} \) fails to be a group under multiplication modulo \(n \) because

1) Closure property fails
2) Closure holds but not associativity
3) There is no identity
4) There is no inverse for an element of the set
Ans: is 4

at least for one element ‘0’

has no inverse in \(\mathbb{Z}_n \).
18) \(G = \{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} : x \neq 0 \& x \in \mathbb{R} \} \) is an abelian group under matrix multiplication. Then the identity element is

1) \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)
2) \(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \)
3) \(\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \)
4) \(\begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix} \)
\[A(x) = \begin{bmatrix} x & x \\ x & x \end{bmatrix}, A(e) = \begin{bmatrix} e & e \\ e & e \end{bmatrix} \]

if

\[A(x) \cdot A(e) = A(x) \text{ then} \]

\[\begin{bmatrix} 2xe & 2xe \\ 2xe & 2xe \end{bmatrix} = \begin{bmatrix} x & x \\ x & x \end{bmatrix} \Rightarrow 2xe = x \]

\[\Rightarrow e = \frac{1}{2} : \ A(e) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \]
19) In the group $G = \{3, 6, 9, 12\}$ under \times_{15}, the identity is

1) 3
2) 6
3) 9
4) 12
Ans: is 2

Since $3 \times 156 = 3$, $6 \times 156 = 6$, $9 \times 156 = 9$ etc.,
20) The set of all 2×2 matrices over the real numbers is not a group under matrix multiplication because

1) Inverse law is not satisfied
2) Associative law is not satisfied
3) Identity element does not exist
4) Closure law is not satisfied
Ans : is 1

If A is a singular matrix
of 2 x 2 order matrix then
A\(^{-1}\) does not exist.
21) \((\mathbb{Z}, \star)\) is a group with \(a \star b = a+b+1\), \(\forall a, b \in \mathbb{Z}\). The inverse of \(a\) is

1) \(A+2\)
2) \(-a+2\)
3) \(-a-2\)
4) \(a-2\)
Ans: is 3

\[a \ast e = a \Rightarrow a + e + 1 = a \Rightarrow e = -1 \]

\[a \ast a^{-1} = e \Rightarrow a + a^{-1} + 1 = -1 \]

\[\Rightarrow a^{-1} = -2 - a \]
22) The four matrices \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}\) under multiplication form is

1) a group
2) a semi group
3) an abelian group
4) infinite group
Ans : is 3

Taking them as I, A, B, C

then AB=C, BC=A, etc., & A.I=A etc.

Also, A.A=I ⇒ A⁻¹=A || ly B⁻¹=B,

C⁻¹=C also AB=BA
23) In the group \((G, \ast)\), \(a \ast b = \frac{ab}{5}\) where \(\forall a, b \in G\). The identity and inverse of 8 are respectively.

1) 5 & \frac{5}{3}
2) 5 & \frac{25}{8}
3) 5 & \frac{8}{25}
4) 5 & \frac{3}{5}
Ans: is 2

\[a \ast e = a \Rightarrow ae/5 = a \Rightarrow e = 5 \]

& \[a \ast a^{-1} = e \Rightarrow aa^{-1} = 5 \Rightarrow a^{-1} = \frac{25}{a} \]

\[\therefore 8^{-1} = \frac{25}{8} \]
24) The proper subgroups of the group \(G = \{0, 1, 2, 3, 4, 5\} \) under addition modulo 6 are:

1) \(\{0, 3\} \) and \(\{0, 2, 4\} \)
2) \(\{0, 1, 3\} \) and \(\{0, 1, 4\} \)
3) \(\{0, 1\} \) and \(\{3, 4, 5\} \)
4) \(\{0\} \) and \(\{0, 1, 2, 3, 4, 5\} \)
Ans : is 1
Since \(0(G)=6\) & \(6=2 \times 3\)
\[\therefore \text{It has proper subgroups of orders } 2 \text{ & } 3\]
In (1) \(3+63=0\) & \(2+62=4, 4+62=0\)
\(4+64=2\) all in the sets
25) In the group $G = \{1, 3, 7, 9\}$ under multiplication modulo 10, the value of $(3 \times_{10} 7^{-1})^{-1}$ is

1) 5
2) 3
3) 7
4) 9
Ans: is 4

e = 1

7 \times_{10} 3 = 1 \Rightarrow 7^{-1} = 3

\therefore 3 \times_{10} 3 = 9

Mathematics

Vikasana – CET 2012
26) The incorrect statement is

1) The identity element in a group is unique
2) In a group of even order, there exists an element \(a \neq e \) such that \(a^2 = e \).
3) The cube roots of unity are \(1, \frac{1-i\sqrt{3}}{2}, \frac{1+i\sqrt{3}}{2} \).
4) In an abelian group \((ab)^2 = a^2b^2, \forall a, b \in G \).
Cube roots of unity are

\[1, w = \frac{-1 + i\sqrt{3}}{2}, \quad w^2 = \frac{-1 - i\sqrt{3}}{2}\]

Ans: is 3
27) In the multiplicative group of fourth roots of unity the inverse of i^{103} is

1) 1
2) -1
3) i
4) $-i$
Ans: is 3

e = 1

\[i^{103} = i^{100} \cdot i^3 = (i^4)^{25} \cdot (i^2)i = 1 \cdot (-1) \cdot i = -i \]

\therefore \text{inverse of} \ -i \ \text{is} \ i.
28) Let \(\mathbb{Q}_1 = \mathbb{Q} - \{1\} \) be the set of all rationals except 1 and \(\star \) is defined as \(a \star b = a + b - ab \quad \forall \ a, b \in \mathbb{Q}_1 \). The inverse of 2 is

1) 2
2) 1
3) 0
4) – 2
Ans : is 1
\[a \times e = a \Rightarrow a + e - ae = a \]
\[\Rightarrow e(1-a) = 0 \Rightarrow e = 0 \quad (\because a \neq 1 \notin Q_1) \]
\[& a \times a^{-1} = e \Rightarrow a + a^{-1} - aa^{-1} = 0 \]
\[\Rightarrow a^{-1}(1-a) = -a \Rightarrow a^{-1} = \frac{-a}{1-a} \]
\[(\because 1-a \neq 0) \]
\[\therefore 2^{-1} = \frac{-2}{1-2} \Rightarrow 2^{-1} = 2 \]
29) In the group \(\{\mathbb{Z}_6, + \ (\text{mod } 6)\} \),
\[2 + 4^{-1} + 3^{-1}\] is equal to

1) 2
2) 1
3) 4
4) 3

Mathematics

Vikasana – CET 2012
Ans: is 2

\[e = 0 \]

\[2 + \sigma 4^{-1} + \sigma 3^{-1} = 2 + \sigma 2 + \sigma 3 = 1 \]
30) Every group of order 7 is

1) Not abelian
2) Not cyclic
3) Cyclic
4) None of these
Ans: is 3

Every group of prime order is cyclic

7 is prime
31) If \(g = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} \) and \(h = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \) are two permutations in group \(S_4 \), then \((h \times g)(2) = \)

1) 2
2) 1
3) 3
4) 4
Ans: is 2

\[(hxg)^2 = h[g(2)] = h(3) = 1\]
32) If \(g = (1 \ 2 \ 3 \ 4) \) then \(g^{-1} \)

1) \((3 \ 4 \ 1 \ 2) \)

2) \((4 \ 2 \ 1 \ 3) \)

3) \((1 \ 2 \ 3 \ 4) \)

4) \((3 \ 1 \ 4 \ 2) \)
Ans: is 1

\[g^{-1} = (3 \ 4 \ 1 \ 2) \]

\[g^{-1} = (1 \ 2 \ 3 \ 4) \]
33) In the group \{1, 2, 3, 4, 5, 6\} under multiplication modulo 7, 5x=4 has the solution x =

1) 0.8
2) 2
3) 3
4) 5
Ans : is 4

(e=1)

5x \cdot 3 = 1 \Rightarrow 5^{-1} = 3

\therefore 5x = 4 \Rightarrow x = 5^{-1}x \cdot 4 = 3 \cdot 4 = 5
34) In the group $G=\{2, 4, 6, 8\}$ under X_{10}, the inverse of 4 is

1) 6
2) 8
3) 4
4) 2

Mathematics
Vikasana – CET 2012
Ans: is 3

Here $e=6$ since $4x_{10}6=4$ etc.

$\therefore 4x_{10}4=6 \iff 4^{-1}=4$
35) The Set \{-1, 0, 1\} is not a group w.r.t. addition because it does not satisfy

1) Closure property
2) Associative law
3) Existence of identity
4) Existence of inverse

Mathematics

Vikasana – CET 2012
Ans: is 1

$1+1=2 \in \text{the set}$
36) If every element of a group G is its own inverse, then G is

1) Finite
2) Infinite
3) Cyclic
4) Abelian
Ans: is 4

since \(a = a^{-1}, \ b = b^{-1} \ \forall \ a, b \in G \)

Now \((ab)^{-1} = ab \) (by hypothesis)

\[\Rightarrow b^{-1}a^{-1} = ab, \ by \ property \]

\[\Rightarrow ba = ab \]

\[\therefore \ G \ is \ abelian \]
37) If a, b, c, are three elements of a group \((G, \star)\), and \((a \star b) \star x = c\), then \(x =\)

1) \(c \star (a^{-1} \star b^{-1})\)
2) \(c \star (b^{-1} \star a^{-1})\)
3) \((b^{-1} \star c^{-1}) \star c\)
4) \((a^{-1} \star b^{-1}) \star c\)
Ans : is 3

\[(a \ast b)^{-1} \ast (a \ast b) \ast x = (a \ast b)^{-1} \ast c\]

\[e \ast x = (b^{-1} \ast a^{-1}) \ast c\]
38) If \(\{ z_7, x_7 \} \) is a group, then the inverse of 6 is

1) 6
2) 4
3) 1
4) 3
Ans: is 1

since $6 \cdot 6 \equiv 36 \equiv 1 \pmod{7}$

where

$s_6 = 1$

∴ $6^{-1} = 6$