

Physical Chemistry

Thermodynamics and Thermochemistry

- 1. If in a chemical reaction the products have less energy than the reactants that reaction is
 - 1) A reversible reaction
 - 2) An endothermic reaction
 - 3) An isothermal reaction
 - 4) An exothermic reaction

2. Given that $Zn+1/2 O_2 \rightarrow ZnO + 35.28kJ$ $HgO \rightarrow Hg+1/2O_2 - 9.11kJ$ so that heat of the reaction $Zn_2HgR_J \rightarrow ZnO+Hg$ is

- 2) 44.39kJ
- 3) 44.39kJ
- 4) 2.617kJ

- 3. Given $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$; $\Delta H = -395 \text{kJ}$ $S_{(s)} + O_{2(g)} \rightarrow SO_{2(g)}$; $\Delta H = -295 \text{kJ}$ $CS_{2(l)} + 3O_{2(g)} \rightarrow CO_{2(g)} + 2SO_{2(g)}$; $\Delta H = -295 \text{kJ}$ so heat of formation of carbon bisulphide is
 - 1) 85 kJ
 - 2) 125kJ
 - 3) 165kJ
 - 4) 205kJ

- 4. A mixture of two moles of carbon monoxide and one mole of oxygen in a closed vessel, is ignited to convert the carbon monoxide to carbon dioxide. If ΔH is the enthalpy change and ΔE is the change in internal energy
 - 1) $\Delta H > \Delta E$ 2) $\Delta H < \Delta E$ 3) $\Delta H = \Delta E$
 - 4) The relationship depends on the capacity of the vessel

- 5. Given C(graphite) \rightarrow C(g) Δ H=716.7kJ, C(diamond) \rightarrow C_(g), Δ H=714.8kJ. The Δ H for the reaction C(graphite) \rightarrow C(diamond) is
 - 1) 1.9kJ
 - 2) -1.9kJ
 - 3) Zero
 - 4) 714.8kJ

6. In the reaction $CO_2(g)+H_2(g) \rightarrow CO(g)+H_2O(g)$ $\Delta H=2.8kJ$ then ΔH represents

- 1) Heat of reaction
- 2) Heat of combustion
- 3) Heat of formation
- 4) Heat of solution

- 7. The enthalpies of elements in their standard states are taken as zero. Hence the enthalpy of formation of a compound
 - 1) Should always be negative
 - 2) Should always be positive
 - 3) Will be equal to twice the energy of combustion
 - 4) May be positive or negative

- 8. The enthalpy of formation of two compounds A and B are -84kJ and -156kJ respectively. Which one of the following statements is correct?
 - 1) Both A and B are unstable
 - 2) A is less stable than B
 - 3) A is more stable than B
 - 4) A and B are endothermic compounds

- 9. The enthalpy of neutralization of acetic acid and sodium hydroxide is 55.4kJ. What is the enthalpy of ionization of acetic acid
 - 1) -1.9 kJ
 - 2) +1.9 kJ
 - 3) +5.54 kJ
 - 4) -5.54 kJ

10. The heat of formation of $Fe_2O_{3(s)}$ is -820kJ. The heat of combustion of iron is

- 1) -410 kJ
- 2) 820 kJ
- 3) 820 kJ
- 4) 1620kJ

11. The thermochemical equation for the formation of Al₂O₃ is $2AI+.... \rightarrow AI_2O_{3(s)}$

- 1) 3CO_{2(g)}
 2) 3/2O_{2(g)}
 3) 3/4O_{2(g)}
 4) 2/3O_{2(g)}

12. If 4g of methane are to be completely burnt, the amount of oxygen required is

- 1) 4g
- **2)** 8g
- 3) 16g
- 4) 32g

13. In an exothermic reaction heat is

- 1) Evolved
- 2) Absorbed
- 3) Either evolved or absorbed
- 4) Neither evolved nor absorbed

- 14. Heat of transition is the heat evolved or absorbed when a substance is converted from
 - 1) Solid to liquid
 - 2) Solid to vapour
 - 3) Liquid to vapour
 - 4) One allotropic form to another allotropic form

15. Heat of neutralisation of a strong acid by a strong base is a constant because

- 1) Salt formed does not hydrolyse
- 2) Only H⁺ and OH⁻ ions react in every case
- 3) The strong base and strong acid react completely
- 4) The strong base and strong acid react in ageous solution.

- 16. The heat of formation of carbon dioxide is -393.5kJ. The heat of decomposition of carbon dioxide into the elements is
 - 1) 393.5kJ
 - 2) 161.7kJ
 - 3) 196.7kJ
 - 4) 203kJ

- 17. When a gm. atom of carbon is converted into a gm. molecule of carbon dioxide, the heat liberated is the same
 - 1) Irrespective of whether the volume is kept constant.
 - 2) Irrespective of the temperature at which the reaction was carried out.

- 3) Whether the carbon taken was graphite or diamond.
- 4) Whether the reaction was carried out in one step or whether the carbon was first converted to carbon monoxide and then to carbon dioxide

18. $\Delta H = \Delta E$ for the reaction

- 1) $N_{2(g)} + 3H_{2(g)} \leftrightarrow 2NH_{3(g)}$ 2) $2SO_{2(g)} + O_{2(g)} \leftrightarrow 2SO_{3(g)}$ 3) $PCI_{5(g)} \leftrightarrow PCI_{3(g)} + CI_{2(g)}$ 4) $N_{2(g)} + O_{2(g)} \leftrightarrow 2NO_{(g)}$

Physical Chemistry

Chemical Equilibrium

1. 2SO₂+O₂ ⇔ 2SO₃ the forward reaction is favoured by

- 1) High temperature
- 2) Low pressure
- 3) Removal of sulphur dioxide
- 4) High pressure

2. The equilibrium $N_2+O_2 \Leftrightarrow 2NO$ is established in a reaction vessel of 2.5 litres capacity. The amounts of nitrogen and oxygen taken at the start were respectively 2 moles and 4 moles. Half a mole of nitrogen has been used up at equilibrium. The molar concentration of nitric oxide is

1) 0.2

2) 0.4

3) 0.6 4) 0.1

- 3. One mole of hydrogen iodide is heated in a closed container of capacity 2 litres. At equilibrium half a mole of hydrogen iodide has dissociated. The equilibrium constant is
 - 1) 1.00
 - 2) 0.50
 - 3) 0.25
 - 4) 0.75

- 4. A and B are gaseous substances which react reversibly to give two gaseous substances C and D, accompanied by liberation of heat. When the reaction reached equilibrium it is found that $K_c = K_p$. The equilibrium cannot be disturbed by
 - 1) Adding A

- 2) Adding D
- 3) Raising the temperature
- 4) Increasing the pressure

- 5. In a reaction A+B ⇔ C+D the initial concentration of A and B were 0.9 mol dm⁻³ each. At equilibrium the concentration of D was found to be 0.6 mol dm⁻³. What is the value of equilibrium constant for the reaction?
 - 1) 8
 - 2) 4
 - 3) 9
 - 4) 3

- 6. 5 moles of SO₂ and 5 moles of O₂ are allowed to react to form SO₃ in the closed vessel. At equilibrium state, 60% of SO₂ is used. The total number of moles of SO₂, O₂ and SO₃ in the vessel now is
 - 1) 10.0
 - 2) 8.5
 - 3) 10.5
 - 4) 3.9

- 7. A quantity of PCl₅ was heated in 10 dm³ vessel at 250° C. At equilibrium, the vessel contains 0.1mole of PCl₅ and 0.2 mole of Cl₂. The equilibrium constant for the reaction is
 - 1) 0.05
 - 2) 0.02
 - 3) 0.025
 - 4) 0.04

8. The rate of forward reaction is twice the rate of reverse reaction at a given temperature and identical concentration K_{eq} is

- 1) 0.5
- 2) 1.5
- 3) 2.5
- 4) 2.0

- 9. 15 moles of H₂ and 5.2 moles of I₂ are mixed and allowed to attain equilibrium at 500°C. At equilibrium the concentration of HI is found to be 10 moles. The equilibrium constant for the formation of HI is
 - 1) 50
 - 2) 15
 - 3) 100
 - 4) 25

10. 2HI \leftrightarrow H₂ + I₂ Here the relation between K_P and K_C is

- 1) $K_P > K_C$
- 2) K_P<K_C
 3) K_P=K_C
- 4) K_P≠K_C

- 11. $N_2+3H_2 \leftrightarrow 2NH_3 + Heat$. What is the effect of increase of temperature on the equilibrium of the reaction?
 - 1) Equilibrium is shifted to the left
 - 2) Equilibrium is shifted to the right
 - 3) Equilibrium is unaltered
 - 4) Reaction rate does not change

12. The reaction in which the yield of the product cannot be increased by the application of high pressure is

- 1) $PCl_3 + Cl_2 \leftrightarrow PCl_5$
- 2) $N_2 + O_2 \leftrightarrow 2NO$
- 3) $N_2 + 3H_2 \leftrightarrow 2NH_3$
- 4) $2SO_2 + O_2 \leftrightarrow 2SO_3$

- 13. At any moment before a reversible reaction attains equilibrium it is found that
 - 1) The velocity of the forward reaction is increasing and that of the backward reaction is decreasing.
 - 2) The velocity of the forward reaction is decreasing and that of the backward reaction is increasing.

- 3) The velocities of both the forward reaction and backward reaction are increasing.
- 4) The velocities of both the forward reaction and backward reaction are decreasing.

14. In a catalytic conversion of N₂ to NH₃ by Haber process the rate of a reaction was expressed as change in the concentration of ammonia per time is 40×10⁻³ mol l⁻¹s⁻¹. If there are no side reactions the rate of the concentration as expressed in terms of hydrogen is

- 1) 60×10⁻³ mol l⁻¹ s⁻¹
- 2) 20×10⁻³ mol l⁻¹ s⁻¹
- 3) 1200 mol i⁻¹ s⁻¹
- 4) 10.3×mol I⁻¹ s⁻¹

KEA

- 15. At a given temperature, the equilibrium constant for the reaction, $PCl_{5(g)} \leftrightarrow PCl_{3(g)} + Cl_{2(g)}$ is 2.4×10^{-3} . At the same temperature, the equilibrium constant for the reaction $PCl_{3(g)} + Cl_{2(g)} \leftrightarrow PCl_{5(g)}$ is
 - 1) 2.4×10⁻³
 - 2) -2.4×10⁻³
 - 3) 4.2×10²
 - 4) 4.8×10⁻²

Physical Chemistry

Surface Chemistry

Catalyst & Adsorption

1. Which of the following types of metals form the most efficient catalysts?

- 1) Alkali metals
- 2) Alkaline earth metals
- 3) Transition metals
- 4) All of these

2. Which of the following statements is not true?

- 1) A catalyst alters the rate of a reaction
- 2) A catalyst is specific in nature
- 3) A catalyst initiates a reaction
- 4) A catalyst does not affect an equilibrium

3. Mark the correct statement, in a reversible reaction.

- 1) The catalyst catalyses the forward reaction
- 2) The catalyst catalyses the backward reaction
- 3) The catalyst influences the direct and the reverse reaction to the same extent
- 4) The catalyst increases the rate of forward reaction and decreases the rate of backward reaction.

4. Which of the statement is wrong among the following?

- 1) Haber's process of NH₃ requires iron as catalyst
- 2) Friedel-Craft's reaction uses iron as catalyst.
- 3) Hydrogenation of oils uses iron as catalyst
- 4) Oxidation of SO₂ to SO₃ requires V₂O₅

- 5. Which one of the following is a homogeneous catalysis?
 - 1) Hydrogenation of oils
 - 2) Synthesis of ammonia by Haber's process
 - 3) Manufacture of sulphuric acid by lead chamber process
 - 4) Manufacture of sulphuric acid by contact process

- 6. The adsorption of inert gases on the surface of activated charcoal increases with
 - 1) Decrease of both atomic mass and temperature
 - 2) Increase of both atomic mass and temperature
 - 3) Increase of atomic mass and decrease in temperature
 - 4) Decrease of atomic mass and increase in temperature of the control of the cont

- 7. A small amount of silica gel and that of anhydrous CaCl₂ are placed separately in two corners of room containing water vapour. What phenomena will occur in these two cases?
 - 1) Adsorption in both 2) Absorption in both
 - 3) Adsorption on silica gel and absorption on CaCl₂
 - 4) Absorption on silica gel and adsorption on CaCl₂ Vikasana CET 2012

8. Rate of physisorption increases with

- 1) Decrease in temperature
- 2) Increase in temperature
- 3) Decrease in pressure
- 4) Decrease in surface area

- 9. In chemisorption, as the pressure increases the rate of adsorption
 - 1) Decreases
 - 2) Increases
 - 3) Increases up to certain pressure and later remains constant
 - 4) Remains the same

10.The decomposition of H₂O₂ increases in the presence of

- 1) Acetanilide
- 2) dil.H₂SO₄
- 3) Alcohol
- 4) MnO₂

11. An inhibitor is

- 1) A homogeneous catalysis
- 2) A heterogeneous catalyst
- 3) A negative catalyst
- 4) An auto catalyst

12. Potassium metabisulphite used as a food preservative is

- 1) A homogeneous catalyst
- 2) A heterogeneous catalyst
- 3) A positive catalyst
- 4) A negative catalyst

13. In the case of auto catalysis

- 1) Solvent catalyses
- 2) Product catalyses
- 3) Heat produced in the reaction catalyses
- 4) Reactant catalyses

14. A catalytic poison destroys the activity of a catalyst by

- 1) Forming a protective coating on the layer of the surface of the catalyst
- 2) Decreasing the activation energy of the reaction
- 3) Establishing weak Vander Waals forces at the active centres
- 4) Blocking active centres permanently

15. For adsorption of a gas on a solid, the plot of log x/m Vs log P is linear with slope equal to (n being whole number)

- 1) k
- 2) logk
- 3) n
- 4) 1/n

- 16. Which of the following is not correct regarding the physical adsorption of a gas on the solid surface?
 - 1) On increasing temperature, adsorption increases continuously
 - 2) Enthalpy and entropy changes are negative
 - Adsorption is more for specific substance
 - 4) It is a reversible reaction2

17. In Langmuir's model of adsorption of a gas on a solid surface

- 1) The rate of dissociation of adsorbed molecules from the surface does not depend on the surface covered
- 2) The adsorption at a single site on the surface may involve multiple molecules at the same time

- 3) The mass of gas striking a given area of surface is proportional to the pressure of the gas
- 4) The mass of gas striking a given area of surface is independent of the pressure of the gas

KEA

18. Freundlich equation for a adsorption of gases (in amount of X g) on a solid (in amount of m g) at constant temperature can be expressed as

$$1) \qquad \log \frac{X}{m} = \log p + \frac{1}{n} \log k$$

$$2) \frac{X}{m} \propto p^{n}$$

3)
$$\frac{x}{m} = \log p + \frac{1}{n} \log k$$

4)
$$\log \frac{x}{m} = \log k + \frac{1}{n} \log p$$

Thank You