ORGANIC CHEMISTRY | 1. | The credit for syntl | nesizing first organi | c compound in the | laboratory went to | |----|---|---|--|--------------------| | | a) Berzelius | b) Wohler | c) Kolbe | d) Berthelot | | 2. | b) Chlorination follows: | onverted to ethane
owed by the reaction
owed by the reaction
owed by the wurtz
owed by the decarl | on with alcoholic Kon with aqueous Koreaction. | OH. | | 3. | The product 'D' in | the reaction is | | | | | $\begin{array}{cc} C_2H_6 & \frac{Cl_2}{\mathbf{h}_{\gamma}} \end{array} \xrightarrow{A}$ | $ \begin{array}{ccc} A & AqKOH & B & (i)K_2 \\ \hline (ii) Y \end{array} $ | Cr ₂ O ₇ /H ⁺ C Sodalim | e D | | | a)Ethane | b) Methane | c) Methanol | d) Ethanol | | 4. | Identify the produ | ct P in the reaction | | | | | $CH_3OH \xrightarrow{PI_3} 1$ | M alc KCN N H_2O | $H^+ O \xrightarrow{\text{LiAlH}_4} P$ | | | | a)Methanol | b) Ethanol | c) Methanal | d) Ethanal | | 5. | Identify the product C ₂ H ₅ OH K ₂ Cr ₂ | ot D in the reaction O_7/H^+ A Sodalime | B <u>Cl₂</u> C <u>Aqk</u>
hγ | KOH D | | | a)Ethanal | b) Methanal | c) Ethanol | d) Methanol | | 6. | Inductive effect in a) Delocalization o c)Displacement of | of σ Electron. | | b) Delocalization d)Displacement o | | |----|---|---|-------------------------|--|---------------------| | 7. | The order of +I eff
a) $C_3H_7 > C_2H_5 > CH$
c) $H > C_2H_5 > CH_3 >$ | H ₃ > H | b) H > | $CH_3 > C_2H_5 > C_3H_7$ | | | 8. | Which of the follow
given compounds
a)FCH ₂ COOH > CH ₂
b)BrCH ₂ COOH > ClC
c)FCH ₂ COOH > ClC
d)CH ₃ COOH > BrCH | ₃COOH > BrCh
CH₂COOH > F(
H₂COOH > Br | H₂COO
CH₂CO
CH₂CO | H >CICH₂COOH
OH >CH₃COOH
OH >CH₃COOH | the activity in the | | 9. | Which one of the fa)2-chloropentance | oic acid | b)3-cł | nloropentanoic aci | | | 10 | .Which statement i
a)It is permanent of
b)It is the property
c)It cause permand
d)All are correct | effect
y of single bor | nd | | | | 11 | .Which of the follo | _ | | | | | | a)Alkene | b)Ethers | | c)Aldehydes | d)Ketones | | 12 | .When H+ approac
a)+M effect | | = | nd of alkene show
c)+E effect | | | 13 | .Which statement i
a)It is temporary e
b)It is property of
c)It take place in tl
d) It is a permaner | effect.
Pi- Bond.
he presence c | | | | | 14.Which of
a) CN | the following has
b) CHO | +R(resonance
c) NH ₂ | e) effect. | d) NO ₂ | | |--|---|------------------------------------|-----------------------------|----------------------|--------------------------| | a) Migrat | e effect involves
ion of hydrogen at
lization of π Electr | • | Delocaliza
All are co | ation of σ Elerrect. | ectrons. | | 16. Which of the following pairs represents stereo-isomerism? a) Geometrical Isomerism and Linkage Isomerism. b) Geometrical Isomerism and Optical Isomerism. c) Structural Isomerism and Geometrical Isomerism. d) Chain Isomerism and Rotational Isomerism. | | | | | | | 17.But-2-ene exhibits cis-trans isomerism due to a) Rotation around C₃—C₄ Sigma Bond b) Restricted rotation around C=C Bond c) Rotation around C₁—C₂ bond d) Rotation around C₂—C₃ double bond | | | | | | | 18.The lower | st alkene which ca
b) Prope | • | ometrical is
1-butene | | butene | | 19.Ordinary
a)Nickel p | light is converted brism b)Glass I | - | olarized lig
Nicol Prisn | | g through a
larimeter | | 20.Optical ad
a)Polarim
c)Spectro | | b)Abbe's | s refracton
carbon da | | | | a)Contain
b)Is non-¡
c)Is non s | ic molecule necess
is (Chiral / Asymm
planar.
uper impossible o
r impossible on its | etric) Carbon
n its mirror in | n atom
mage. | vity if it | | | 22 | a)Contains asymmb) is non-planarc) does not contain | ule definitely shows
netric carbon atoms
n plane of symmet
ble on its mirror im | ry | - | |--|---|--|---|-------------------------------------| | 23 | .Optical isomers w
a)Enantiomers | | ges of each other a
c)Tautomer d)Me | | | 24 | .The conversion of a)Resolution | | acemic mixture is kr
c)Chirality d)Inv | | | 25 | The process of septicalled a)Racemisation c)Boiling Point | paration of racemic
b)Resolutio
d)Walden in | | – Enantiomers is | | 26 | .Which of the follo
a) CH ₃ Cl | wing is the chiral m
b) CH ₂ Cl ₂ | nolecule
c) CHBr ₃ | d) CHClBrl | | 27 | The hybridisation a) sp | of carbon atom in (
b) sp ² | cyclopropane is
c) sp ³ | d) d ² sp ³ | | 28 | _ | ula of Cycloalkane is
b) C _n H _{2n+2} | | d) C _n H _{2n-4} | | 29 | = | = | Baeyer's strain the c)Cyclohexane | - | | 30.Angle strain = $\frac{1}{2}$ [109 ⁰ 28 ¹ – bond angle in cycloalkane] which Cycloalkane has maximum angle strain. | | | | | | | a)Cyclopropane | b)Cyclobutane | c)Cyclopentane | d) Cyclohexane | | a \ D a a : : a :: | | | | |--|----------------------------|--------------------------|--------------| | a)Baeyer | b)Sachse | c) Kekule | d) Berzelius | | | xane is poured in v | vater, it floats beca | use | | • • | e is in chair form | | | | · · | is in crown form | | | | d)Cyclohexane | e is less denser thai | n water. | | | 33.The Least Ener | getic conformation | n of Cyclohexane is | | | a)Chair Confor | mation b |)Boat Conformatio | n | | c)E, Z Form | d |)Cis Form | | | 34.Benzene was o | discovered by | | | | a)Dalton | b)Faraday | c)Kekule | d)Boyle | | • | , , | • | , , | | 35.The number o | f Sigma & Pi-Bonds | in a molecule of B | enzene | | | | | | | a) 6σ and 9π | | | | | b) 9σ and 3π | | | | | b) 9σ and 3π
c) 12σ and 3π | | | | | b) 9σ and 3π | | | | | b) 9σ and 3π c) 12σ and 3π d) 6σ and 6π | f π-Electron in ben | zene molecule are | | | b) 9σ and 3π c) 12σ and 3π d) 6σ and 6π | f π-Electron in ben
b)3 | zene molecule are
c)5 | d) 6 | | b) 9σ and 3πc) 12σ and 3πd) 6σ and 6π | b)3 | | d) 6 | | b) 9σ and 3π
c) 12σ and 3π
d) 6σ and 6π
36.The number o
a)4 | b)3 | c)5 | d) 6 | | b) 9σ and 3π c) 12σ and 3π d) 6σ and 6π 36.The number of a)4 37.Benzene mole | b)3
cule is | c)5
r | d) 6 | | b) 9σ and 3π c) 12σ and 3π d) 6σ and 6π 36. The number of a)4 37. Benzene mole a) Trigonal c) Tetrahedral | b)3
cule is
b)Plana | c)5
r
nedral | d) 6 | | 9.Benzene does not give addition reaction even though it contain 3 double bonds because a) Double bond change their position rapidly b) Resonance lowers the energy of benzene molecule & leads to greater stabilization. c) Double bond in benzene are strong d) None of the above. | | | | |--|---|--|--| | 40.The overlapping orbitals in Ber
a) sp—sp
b) p—p
c) sp ³ —sp ³
d) sp ² —sp ² | nzene is of the type | | | | 41.The electrophile in the nitrationa)Nitronium ion c)Nitrite ion | on reaction of benzene is b)Nitrinium Ion d)Nitrate ion | | | | 42. During the nitration reaction of a) Solvent c) Sulphonating agent | of benzene concentrated H ₂ SO ₄ is used as b) Dehydrating agent d) Nitronium ion producer. | | | | 43.In benzene, all the six C—C bo
a)Resonance
c)Isomerism | nd have the same bond length because of b)Hybridization d)Chain Isomerism | | | | 44. The electrophile in the sulphoral a) SO ₂ b) SO ₃ | nation reaction is
c) SO ₃ H d) SO ₃ ⁺ | | | | 45. The function of anhydrous AIC a) To absorb water b) To absorb HCl c) To produce attacking electro d) To produce nucleophile. | | | | | 46.Adding Chlorine to benzene in the present of anhydrous AlCl₃ is an example of a) Addition reaction b) Substitution reaction c) Elimination reaction d) Polymerisation reaction | | | | | | |--|-------------------------|-----------------------|--|--|--| | 47.In Benzene molecule the carbo | | in angle of | | | | | a) 120° b) 180° | c) 109° 28 ¹ | d) 60° | | | | | 48.Regarding benzene molecule, which of the following statement is wrong. a) It has six identical carbon atom b) It is an unsaturated compound. c) It is an unsaturated compound and answer tests for unsaturation. a) C—C bond length is identical. | | | | | | | 49. Which one of the following is f | formed when benzene rin | ng is attacked by the | | | | | elctrophile. | | | | | | | a) Carbon ion | b) Carbocation | | | | | | c) Nucleophile | d) Free-radical | | | | | | | | | | | |