1) The number of moles of AgCl precipitated when excess of AgNO\textsubscript{3} solution is added to one mole of [Cr(NH\textsubscript{3})\textsubscript{4}Cl\textsubscript{2}]Cl solution is

a) one
b) three
c) two
d) four
Answer:
The complex has only one mole of ionisable chlorine, the chlorine outside the square bracket. \[\text{[Cr(NH}_3\text{)}_4\text{Cl}_2]\text{Cl}\]

Ans : (a)
2) The octahedral and paramagnetic complex is

a) \([\text{Fe(CN)}_6]^{3-}\)
b) \([\text{Fe(CN)}_6]^{4-}\)
c) \([\text{Cu(NH}_3)_4]^{+2}\)
d) \([\text{Ni(CN)}_4]^{-2}\)
Charge on Fe is F^{+3}

Electronic Configuration of Fe^{+3} [Ar]

When strong ligands CN^- approach, pairing of electron takes place but still contains one unpaired electron hence paramagnetic

Ans: (a)
3) Ionisable and non-ionisable valency of copper in $[\text{Cu(NH}_3\text{)}_4]\text{SO}_4$

a) 4 and 2

b) 2 and 4

c) 2 and 2

d) 1 and 4
Ionisable valency = O.No.=2; Non ionisable is co-ordination no.=4

Ans : (b)
4) Which of the following complex will give white precipitate with BaCl₂(aq)?

- a) [Cr(NH₃)₅SO₄]Cl
- b) [Co(NH₃)₄SO₄]NO₂
- c) [Cr(NH₃)₅Cl]SO₄
- d) both (1) and (3)
Answer: contains SO_4^{-2} ion

Ans: (c)
5) The number of d-electrons in $[\text{Cr(H}_2\text{O})_6]^+^3$ [Z of Cr=24] is

a) 2
b) 3
c) 4
d) 5
Answer:
Electronic configuration of Cr$^{3+}$ is [Ar] 3d3 since H$_2$O is a weak field ligand number of unpaired electrons remain unchanged.
Ans : (b)
6) The donor atoms in EDTA are
a) two N and two O
b) two N and four O
c) four N and two O
d) three N and three O
Answer:

Ans : (b)
7) Which of the following ligands is not chelating?
 a) EDTA
 b) en
 c) oxlate
 d) pyridine
Answer:

monodentate ligand can not form chelate

Ans : (d)
8) The IUPAC name of $[\text{CoCl(NO}_2\text{)}(\text{en})_2]\text{Cl}$ is
 a) chloronitrobis
 (ethylenediamine) cobalt (III) chloride
 b) chloronitrobis
 (ethylenediamine) cobalt (II) chloride
 c) chlorobis (ethylene diamine) nitrocochloralt (III) chloride
 d) bis (ethylenediamine) chloronitrocochloralt (III) chloride
Answer:

Ans : (c)
9) The IUPAC name for the complex \([\text{CrCl}_2 \text{ (H}_2\text{O})_4]\text{NO}_3\) is

a) dichlorotetraaquachromium (III) nitrate

b) tetraaquadichlorochromate (III) nitrate

c) dichlorotetraaqueous-chromium (IV) nitrate

d) tetraaquadichlorochromium (III) nitrate
Answer:

Ans : (d)
10) The chemical formula for iron hexacyano-ferrate (II) is
a) Fe[Fe(CN$_6$)]
b) Fe$_3$[Fe(CN)$_6$]
c) Fe$_3$[Fe(CN)$_6$]$_4$
d) Fe$_4$[Fe(CN)$_6$]$_3$
Answer:

Ans : (d)
11) The compound [Cr(H₂O)₆]Cl₃ and [Cr(H₂O)₃Cl₃]·3H₂O are example of

a) linkage isomerism
b) hydrate isomerism
c) ligand isomerism
d) ionization isomerism
Answer:

Ans: (b)
12) The complex ions
\[\text{[Co(NH}_3\text{)}_5(\text{NO}_2\text{})]^{2+} \] and
\[\text{[Co(NH}_3\text{)}_5(\text{ONO})]^{2+} \] are

a) ionization isomers
b) linkage isomers
c) coordination isomers
d) geometrical
Answer:

Ans : (b)
13) The possible number of ionization isomers for the complex \([\text{MCl}_2\text{Br}_2]\text{SO}_4\) is

a) 3
b) 2
c) 4
d) 5
Answer:

\[[\text{MCl}_2\text{Br}_2] \text{ SO}_4 \ ; \ [\text{MClBr}_2\text{SO}_4]\text{Cl} \ ; \ [\text{MCl}_2\text{BrSO}_4]\text{Br} \]

Ans : (a)
14) The effective atomic number of iron (at. No.26) in the complex \(\text{K}_4 [\text{Fe(CN)}_6] \) is

a) 24
b) 35
c) 36
d) 18
Answer: Ans: (c)
15) Coordination number and oxidation number of Cr in $\text{K}_3 \left[\text{Cr} (\text{C}_2\text{O}_4)_3 \right]$ are, respectively
a) 4 and +2
b) 6 and +3
c) 3 and +3
d) 3 and 0
Answer:

Ans : (b)
16) In which of the following complex the central metal ion is not in a state of d\(^2\)sp\(^3\) hybridized state
a) \([\text{CoFe}_6]^{3-}\)
b) \([\text{Co(NH}_3)_6]^{3+}\)
c) \([\text{Fe(CN)}_6]^{3-}\)
d) \([\text{Cr(NH}_3)_6]^{3+}\)
Answer:

F is a weak ligand, forms outer d complex sp^3d^2

Ans : (a)
17) Which of the following is paramagnetic?
 a) $K_4[Fe(CN)_6]$
 b) $K_3[Fe(CN)_6]$
 c) $[Ni(CO)_4]$
 d) $[Co(NH_3)_6]Cl_3$
Answer:

Fe$^{+3}$ [Ar]

approach

CN$^-$ unpaired electrons paramagnetic

Ans : (b)
18) In the complex \([\text{Ni}(\text{H}_2\text{O})_2 \ (\text{NH}_3)_4]^{2+}\), the number of unpaired electron is
a) 0
b) 1
c) 3
d) 2
Answer:

Ni$^{+2}$ has undergone $sp^{3}d^{2}$ hybridisation.

Ans: (d)
19) Which one of the following is not expected to show paramagnetism?

a) \([\text{Ni(H}_2\text{O)}_6]^{2+}\)

b) \(\text{Ni(CO)}_4\)

c) \([\text{Ni(NH}_3)_4]^{2+}\)

d) \([\text{Co(NH}_3)_6]^{2+}\)
Answer:

Ni atom [Ar]

St. ligand no unpaired electron not para

Ans : (b)
20) Which complex has square planar structure?
 a) Ni(CO)\(_4\)
 b) [NiCl\(_4\)]\(^{2+}\)
 c) [Ni(H\(_2\)O)\(_6\)]\(^{2+}\)
 d) [Cu(NH\(_3\))\(_4\)]\(^{2+}\)
Answer:

(d) dsp² hybridisation

Ans: (d)
21) Amongst the following complex ions, which one has the highest paramagnetism?

a) \([\text{Cr(H}_2\text{O)}_6]^{3+}\)
b) \([\text{Fe(H}_2\text{O)}_6]^{2+}\)
c) \([\text{Cu(H}_2\text{O)}_6]^{2+}\)
d) \([\text{Zn(H}_2\text{O)}_6]^{2+}\)
Answer:

$\text{Fe}^{+2} \ [\text{Ar}]$

H_2O is a weak ligand

Ans : (b)
22) The compounds
\[\text{[Co(NH}_3\text{)}_5\text{(Br)}]\text{SO}_4 \] and
\[\text{[Co(NH}_3\text{)}_5\text{SO}_4 \] \text{ Br} \] are examples of
a) geometrical isomerism
b) linkage isomerism
c) ionization isomerism
d) optical isomerism
Answer:

Ans : (c)
23) In \([\text{Co(NH}_3\text{)}_6]\text{Cl}_3\) the number of covalent bonds is

a) 6
b) 3
c) 9
d) 18
Each NH$_3$ molecule has 3-covalent bonds

Ans : (d)
24) Which of the following statements is incorrect?
a) in $K_3[Fe(CN)_6]$ the ligand has satisfied only the secondary valency of ferric ion
b) in $K_3[Fe(CN_6)]$ the ligand has satisfied both primary and secondary valencies of ferric ion

c) in $K_4[Fe(CN_6)]$ the ligand has satisfied both primary and secondary valencies of ferrous ion
d) in \([\text{Cu(NH}_3\text{)}_4\text{]}\text{SO}_4\), the ligand has satisfied only the secondary valency of copper ion.
Answer:

CN$^-$ negative ligand satisfies both primary as well as secondary valency of Fe$^{+3}$

Ans : (a)
25) Among [Ni(CO)₄, [Ni(CN)₄]⁻² and [NiCl₄]⁻² species, the hybridisation states at the Ni atom are respectively
a) sp³, dsp², dsp²
b) sp³, dsp²sp³
c) sp³, sp³, dsp²
d) dsp², sp², sp³
CO and CN- are strong field ligands while Cl- is a weak.

In \([\text{Ni}(\text{CO})_4]\) Ni 3d84s2 shifts to 3d104s0 and has sp3 hybridisation.

In \([\text{Ni} (\text{CN})_4]^-\text{2}\), Ni+2 3d8 shifts to acquiring dsp2 hybridisation.

In \([\text{Ni} \ \text{Cl}_4]^-\text{2}\) 3d8 retains the configuration and is sp3- hybridised.

\textbf{Ans} : (b)
26) Which of the following is not an atomic orbital?

a) s
b) p
c) f
d) \(\sigma \)
Answer:

\[\sigma \text{ It is a molecular orbital} \]

Ans : (d)
27) In the following set ups which will give ABMO?

a) \(-+++- \)

b) \(+---++- \)

c) \(+++ \)

d) \(-++- \)
Answer:
ABMO are formed when lobs of opposite signs overlap
Ans: (b)
28) Number of nodal planes in π^*2p_x orbitals are
a) 1
b) 2
c) 3
d) zero
Answer:

Ans : (b)

\[\pi \times 2p_x \]
29) The diagram shows

\[\sigma ns \]
\[\sigma^* ns \]
\[\sigma npz \]
\[\sigma^* npz \]
Answer:

Ans : (d)
30) The electron probability density ψ^2 BMO is higher than that for individual atomic orbitals $(\psi_A^2 + \psi_B^2)$ by a factor of

a) $2\psi_A$

b) $2\psi_B$

c) $2\psi_A\psi_B$

d) (ψ_A^2, ψ_B^2)
Answer:

For BMO
\[(\psi_A + \psi_B)^2 = \psi^2_{BMO}\]

\[\psi_A^2 + \psi_B^2 + 2\psi_A\psi_B = \psi^2_{BMO}\]

Difference

\[\psi^2_{BMO} - \left(\psi_A^2 + \psi_B^2\right) = 2\psi_A\psi_B\]

Ans : (c)
31) What is wrong w.r.t molecular orbital?
 a) It is polycentric in nature
 b) The electron cloud spreads around the nuclei of combining atoms
 c) The shapes are complex than atomic orbitals
 d) All are wrong
Answer:

Ans: (d)
32) Which of the following is not correct w.r.t bond order?
 a) Bond length is inversely proportional to bond order
 b) Bond energy is directly proportional to bond order
c) Bond order is always a whole number

d) Bond formation requires N_B to be greater than N_A
Answer:

Bond order may be a fraction also

Ans : (c)
33) O_2 molecule is paramagnetic because of

a) $[\pi^2 \text{P}_x]^1$ and $[\pi^2 \text{P}_y]^1$

b) $\pi^* \text{2P}_x$ and $\pi^* \text{2P}_y$

c) σ2P^1_z and $\sigma^* \text{2P}^1_z$

d) $\sigma^* \text{2P}^1_z$ and $\pi^* \text{2P}^1_z$
Answer:

Ans: (b)
34) Which of the following is paramagnetic?

a) O_2

b) O_2^-

c) O_2^+

d) All of these
Answer:

Ans : (d)
35) Which of (I) CO (II) N₂ and (III) CN⁻ have the same bond order?

a) I and II
b) II and III
c) I and II
d) All I, II and III
Answer:

All CO, N$_2$ and CN$^-$ have 14 electrons. Hence bond order same.

Ans : (d)
36) Which of the following is correct with respect to the stability order of H₂, H₂⁺ and H₂⁻?

a) H₂ > H₂⁻ > H₂⁺

b) H₂ > H₂⁺ > H₂⁻

c) H₂ > H₂⁺ = H₂⁻

d) H₂ = H₂⁺ = H₂⁻
Answer:

Eventhough both H_2^+ & H_2^- have same bond order in H_2^-, more electronis in ABMO σ^*is which makes it less stable

Ans : (b)
37) Which of the following is paramagnetic?

a) N₂
b) O₂
c) O₂⁻²
d) O₂⁺²
Answer:

It has two unpaired electrons

Ans: b
38) During the changes N_2 to N_2^{+2} and O_2 to O_2^{+2} the bond lengths in respective cases:

a) increases in both
b) decreases in both
c) increases in first case and decrease in second
d) decrease in first case and increases in second
Answer:

For N_2 to N_2^{+2} B. O changes from 3 to 2. Hence bond length increases.

For O_2 to O_2^{+2} bond order changes from 2 to 3 Hence bond length decreases

Ans : (c)
39) In which of the following ionization process the bond order has increased and the magnetic behavior is changed?

a) \(\text{N}_2 \rightarrow \text{N}_2^+ \)
b) \(\text{C}_2 \rightarrow \text{C}_2^+ \)
c) \(\text{NO} \rightarrow \text{NO}^+ \)
d) \(\text{O}_2 \rightarrow \text{O}_2^+ \)
Answer:

NO has 15 electrons with B. O. = 2.5 paramagnetic NO⁺ has 14 electrons with B. O. = 3 and diamagnetic.

Ans : (c)
40) The bond lengths in the species O_2, O_2^+ and O_2^- ions are in the order

a) $O_2^+ > O_2 > O_2^-$
b) $O_2^+ > O_2^- > O_2$
c) $O_2 > O_2^+ > O_2^-$
d) $O_2^- > O_2 > O_2^+$
Answer:

Bond order

\[O_2^- = 1.5 \]
\[O_2 = 2 \]
\[O_2^+ = 2.5 \]

Less the bond order more will be the bond length

Ans : (d)
41) Bond order value of C-C bond in benzene is expected to be
a) 0.5
b) 1
C) 1.5
D) 2
Answer:

Total 9 bonds for 6 carbon atoms

Average BO = \(\frac{9}{6} = 1.5 \)

Ans: (c)
42) The stability order of O_2 and its ions is

a) $O_2^{+2} > O_2^+ > O_2 > O_2^- > O_2^{-2}$

b) $O_2^{+2} = O_2^{-2} > O_2^+ > O_2^- > O_2$

c) $O_2^{+2} = O_2^+ > O_2^{-2} > O_2^- > O_2$

d) $O_2^{-2} > O_2^- > O_2 > O_2^+ > O_2^{+2}$
Answer:

B. O. are

$O_2^{+2} = 3,$

$O_2^+ = 2.5,$

$O_2 = 2,$

$O_2^- = 1.5$

$O_2^{-2} = 1$

Ans : (a)
43) Which of the following statements is correct?
 a) sigma molecular orbitals are symmetrical about internuclear axis
 b) pi-molecular orbitals are not symmetrical about internuclear axis
 c) Diatomic species having equal number of total electrons have equal bond order.
 d) All of the above
Answer:

Ans: (d)
44) Which of the following species has unpaired electrons?

a) N_2

b) N_2^{2+}

c) N_2^{-2}

d) O_2^{-2}
Answer:

\[
\begin{align*}
\text{N}_2 & \quad -2 \quad \text{KK} \quad \sigma y^2 \quad \sigma^* y^2 \quad \pi 2P_x^2 \quad \pi 2P_y^2 \\
\pi 2P_z^2 & \quad \ldots \ldots \quad \pi^* 2P_{x1} \quad \pi^* 2P_{y1}
\end{align*}
\]

Ans : (c)
45) Which of the following is correct w.r.t. metallic bond?
 a) Metal ions occupy lattice points
 b) It is non directional bond
 c) It is a force of attraction between metal cations and delocalized electrons of the electron sea.
 d) All of the above
Answer:

Ans : (d)
46) Metallic luster is due to
a) Absorption and re-emission of photons by oscillating electrons
b) Attraction between kernels and electrons of the electron sea
c) Reflection of incident light
d) Coating of the surface by some reflecting polish
Answer:

Ans : (a)
47. The bond order of NO is 2.5 while that of NO$^+$ is 3. Which of the following statements is true for these two species?

(a) Bond Length of NO is greater than NO$^+$.
(b) Bond Length of the NO$^+$ is greater than NO.
(c) Bond length of NO$^+$ is equal to that of NO.
(d) Bond length is unpredictable.
Answer:

Bond Length $\alpha \frac{1}{B.O}$

Ans : (a)
48) Number of molecular orbitals formed is,
 a) Equal to number of combining atomic orbitals.
 b) Less than number of combining atomic orbitals
 c) More than the number of combining atomic orbitals.
 d) Half the number of combining atomic orbitals.
Answer:

Ans: (a)
49) Which of the following is paramagnetic and also has bond order equal to 0.5,

a) O_2

b) N_2

c) He_2

d) H_2^+
Answer:

Ans: (d)
49) A metallic bond is,

a) Ionic
b) Polar Covalent
c) Non-Polar Covalent
d) Electrostatic
Answer: (d)